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INTRODUCTION

Immune reactions to environmental challenges are
determined by a combination of different types of
immune activity. The imbalanced regulation of the
immune response can promote allergic and autoim�
mune diseases. Manifestations of immune response
and predisposition to immune disorders are controlled
genetically and involve the products of many genes.
For instance, polymorphisms of different genes were
shown to be associated with asthma, multiple sclero�
sis, Crohn’s disease, psoriasis, and rheumatoid arthri�
tis [1–10]. Populations of different ethnicities exhibit
significant variations in frequencies of marker alleles
[11–15]. The variations by immunity�regulating gene
polymorphisms may underlie the differences in the
prevalence of these diseases observed among ethnic
groups [16]. For instance, it was shown that African
Americans are more sensitive to allergen challenges
than Americans of European origin [17–20].

In this work, we investigated the genetic structure
of populations of Northern Eurasia by genes associ�
ated with autoimmune and allergic diseases, as well as
with the regulation of immunoglobulin E (IgE) and
cytokine levels. To analyze the adaptive significance of
markers associated with immunity phenotypes, as
assumed by the hypothesis postulating decanalization

of immune response during the dispersal of modern
humans [17, 21], we assessed the relationships
between allele frequencies and genetic diversity by
selected single nucleotide polymorphisms (SNPs), as
well as climate and geographic factors.

EXPERIMENTAL

Population samples represented 26 ethnic groups
and comprised altogether 1228 individuals residing in
Eastern Europe (Aghuls, Bezhta, Gagauz, Komi,
Maris, Moldavians, Russians, Ukrainians, Tsez), Cen�
tral Asia (Uzbeks, Kazakhs, Kyrgyz), Siberia (Northern
Altaians, Southern Altaians, Buryats, Kets, Tyvans,
Khakas, Khanty, Shors, Evenks), and Far East (Kory�
aks, Nivkhs, Udegei, Chukchi, Yakuts) (Table 1).

Genotyping was performed by real�time PCR and
MALDI�TOF mass spectrometry, as described previ�
ously in [22, 23]. Polymorphisms of genes selected
based on their association with immune disorders or
with the regulation of IgE and cytokine secretion levels
were used as markers (Table 2).

Statistical analysis was performed with STATIS�
TICA 7.0 and ARLEQUIN 3.11 software. The agree�
ment of genotype distributions with the Hardy–Wein�
berg equilibrium was assessed using the χ2 test.
Genetic differentiation of populations was described
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Table 1. Anthropological and linguistic characterization of the ethnic groups studied

Ethnic group 
(N*) Population (settlement) Linguistic family/group Race (anthropological type)

Eastern Europe

Aghuls
(50)

Aghul region, 
Republic of Daghestan

Northeastern Caucasian/
Eastern Lezgic

Caucasian (Caucasus)

Bezhta
(45)

Bezhta region, 
Republic of Daghestan

Nakho�Daghestanian/
Eastern Tsezic

Caucasian (Caucasus)

Gagauz
(45)

Etulia, Kongaz; Moldova Altaian/Turkic Caucasian (lower Danube)

Komis
(45)

Republic of Komi Uralic/Finno�Ugric Caucasian (sublaponoid)

Maris
(50)

Mari El Republic Uralic/Finno�Ugric Caucasian (sublaponoid)

Moldavians
(40)

Karagasani, Moldova Indo�European/Roman Caucasian (lower Danube)

Russians
(50)

Tomsk, Russia Indo�European/Slavic Caucasian (East European)

Ukrainians
(50)

Ukraine Indo�European/Slavic Caucasian (East European)

Tsez
(45)

Tsuntinskii region, 
Republic of Daghestan

Nakho�Daghestanian/
Western Tsezic

Caucasian (Caucasus)

Central Asia

Uzbeks
(44)

Osh, Dzhalalabad; Kyrgyzstan Altaian/Turkic Caucasian (Pamir�Iranian)

Kazakh
(50)

Kazakhstan Altaian/Turkic Mongoloid (Central Asian and 
South Siberian)

Kyrgyz
(50)

Osh, Bishkek, Kegety; Kyrgyzstan Altaian/Turkic Mongoloid (South Siberian)

Siberia

Northern Alta�
ians (50)

Turochak, Gorno�Altaisk; 
Republic of Altai

Altaian/Turkic Mongoloid (South Siberian)

Southern Alta�
ians (50)

Kulada, Republic of Altai Altaian/Turkic Mongoloid (Central Asian)

Buryats
(50)

Kurumkanskii region, 
Republic of Buryatia

Altaian/Mongolian Mongoloid (Central Asian)

Kets
(44)

Kellog; Krasnoyarsk krai Yenisean  Uralic (Yenisean)

Tyvans
(50)

Kyzyl, Republic of Tyva Altaian/Turkic Mongoloid (Central Asian)

Khakas
(50)

Askiz region, Republic 
of Khakassia

Altaian/Turkic Uralic, Mongoloid (South Sibe�
rian)
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using analysis of molecular variance (AMOVA); the
association of polymorphic gene variants with climate
and geographic factors was assessed using the Spear�
man’s correlation coefficient, and selective neutrality of
gene markers was analyzed using the Ewens–Watterson
test [70]. Genetic relationships among the populations
were analyzed using the principal components approach.
The climate data (average annual temperature, average
temperatures of the warmest and the coldest month,
temperature range, average annual precipitation, average
relative humidity) were obtained from the Weatherbase
database (http://www.weatherbase.com).

RESULTS

Genetic Diversity in Population Samples

The data on allele and genotype frequency distri�
butions, as well as on the heterozygosity of the poly�
morphisms analyzed are provided in Appendix (for
supplementary materials, see www.molecbio.com/
downloads/2015/6/supp_cherednichenko_en.pdf)
and are available from the authors on request. Geno�
type frequency distributions disagreed with the
Hardy–Weinberg equilibrium in 51 cases out of 1144,
which, however, does not exceed the expected number
of random deviations from the equilibrium (p < 0.05).
Deviations from the equilibrium did not seem to accu�
mulate for any individual locus or in population

groups. After the Bonferroni correction for multiple
comparisons was applied, the deviation from the equi�
librium remained significant for only four distribu�
tions. Genetic variations by the markers used differed
considerably among the populations studied. The low�
est and the highest values of average expected het�
erozygosity by 44 gene markers were observed in Kory�
aks (0.34) and in Uzbeks (0.41), respectively. An anal�
ysis of correlations between the allele frequencies and
climate and geographic factors revealed significant
correlations (Spearman’s coefficient, p < 0.05) with
absolute latitude (for 12 markers), absolute longitude
(33 markers), average annual temperature (17 markers),
the coldest month temperature (27 markers), temper�
ature range (27 markers), and average annual precipi�
tation (26 markers) (Fig. 1). None of the 44 markers
studied showed a significant correlation with the
warmest month temperature, nor did the average
expected heterozygosity by 44 markers correlate with
any climate or geographic factor.

Evaluation of Selective Neutrality
of Gene Polymorphisms

Using the Ewens–Watterson test, we identified
35 loci under selection (p < 0.05) and 9 selectively neutral
loci (rs144651842, rs1800925, rs1801275, rs1805015,

Table 1. (Contd.)

Ethnic group 
(N*) Population (settlement) Linguistic family/group Race (anthropological type)

Khanty
(45)

Kazym, Khanty–Mansi autono�
mous okrug

Uralic/Finno�Ugric Uralic 

Shors
(45)

Kemerovo oblast Altaian/Turkic Mongoloid (Uralic)

Evenks
(45)

Chara, Tungokochen; 
Zabaikalskii krai

Altaian/Tungusic Mongoloid (Baikalic)

Far East

Koryaks
(50)

Kamchatka krai Chukotko�Kamchatkan Mongoloid (Arctic)

Nivkh
(45)

Moskal’vo, Nekrasovka; 
Sakhalin oblast

Paleoasian/Nivkh Mongoloid (Sakhalin�Amur)

Udegei
(45)

Krasnyi Yar, Agzu; Primorskii krai Altaian/Tungusic Mongoloid (Baikalic)

Chukchi
(50)

Lorino, Novoe Chaplino, Sireniki; 
Chukotka autonomous okrug

Chukotko�Kamchatkan Mongoloid (Arctic)

Yakuts
(45)

Dyupsya, Byadi; 
Republic of Sakha (Yakutia)

Altaian/Turkic Mongoloid (Central Asian)

*N, sample size.



884

MOLECULAR BIOLOGY  Vol. 49  No. 6  2015

CHEREDNICHENKO et al.

Absolute latitude

Absolute longitude
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Fig. 1. Correlations between the allele frequencies of the polymorphic loci studied and climate and geographic factors. Bars cor�
respond to the number of loci for which the p value for the Spearman’s correlation coefficient was lower than 0.05.

rs2104286, rs2381416, rs2476601, rs4986790, rs9888739)
(p > 0.05) (Fig. 2).

The loci rs2305480, rs2569190, rs907092, and
rs9303277 deviated most from the predictions based
on the selective neutrality hypothesis; deviations were
observed in 16, 12, 14, and 12 population samples out
of 26, respectively.

Genetic Differentiation and Genetic Relationships 
among Populations

The extent of genetic differentiation was evaluated
by calculating the Fst coefficient in the total sample by
each marker studied (Fig. 3). Significant differentia�
tion (р < 0.05) was observed for all loci except
rs2305480. High levels of genetic differentiation were
observed for rs1335532 (0.1732), rs2070874 (0.1605),
rs2243250 (0.1675), rs2300747 (0.1846), and
rs6441286 (0.2307). The lowest Fst value was obtained
for rs2305480 (0.0029), and the highest, for rs6441286
(0.2307). The total genetic differentiation level by the
44 loci was 0.0749 (7.5%).

Genetic relationships among populations were
studied using the principal component analysis. The
first two principal components of allele frequencies
were responsible for 53.45% of the total variation in
the populations studied (Fig. 4). On the whole, the
populations’ positions in the principal component
space reflected their geographic location, with the first
component corresponding to longitude. This relation�
ship was also confirmed by the correlation between the
first factor and the longitude of the population�sam�
pling site (Spearman’s coefficient, p = 0.0000). The
second principal component cannot be interpreted as
straightforwardly, since its values did not show signifi�
cant correlation with any climate parameter, but only
a slight trend to correlation with latitude (p = 0.0897).

DISCUSSION

The geographic structure of genetic diversity prob�
ably constitutes the most general pattern in the organi�
zation of human gene pools and can be observed in any
data set that is sufficiently representative of the num�
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ber of markers and populations studied [16]. These
patterns can be established in both the analysis of con�
ventionally neutral genetic marker systems [15] or
large sets of polymorphic genomic loci [16, 71], and in
genotyping genes and markers related to a common
biological function, e.g., genes associated with multi�
factorial diseases [11, 16]. The correlation between the
genetic differentiation of human populations with
geographic distances is probably explained by the evo�
lutionary history of gene pools of modern populations
formed in the course human dispersal mainly due to
migrations, genetic drift, and isolation by distance
[16]. At the same time, individual genome fragments
or groups of functionally related genes may exhibit
deviations from the conventionally neutral geographic
pattern because of the adaptive significance of the cor�
responding phenotypes. For instance, it has been
shown in some of the world’s populations that the fre�

quencies of polymorphic gene variants involved in
sodium homeostasis, energy metabolism, and several
other biological functions correlated with the climate
parameters [72–75]. Immunity�related phenotypes
are among the most obvious selection targets, and sev�
eral studies determined that the genetic diversity of
immune�system genes is related to potential selection
factors. For example, allele frequencies by IL6 poly�
morphism showed a positive correlation with the
pathogenic load in populations from Russia and from
other parts of the world [76], while the prevalence of
filariasis was related to the frequencies of alcohol
dehydrogenase gene (ADH1B) alleles [77]. In one of
our previous works, it was shown that genetic diversity
by gene markers most closely associated with immune
disorders can be explained based on the assumption of
immune response decanalization under the pressure of
natural selection in the course of dispersal of modern
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humans [21]. Data obtained in this work contribute to
the understanding of the structure and possible mech�
anisms of genetic differentiation affecting the heredi�
tary component of immunity�related phenotypes.

To sum up, in this work, we have characterized the
gene pools of Northern Eurasian populations based on
a set of markers associated with immune�dependent
phenotypes. Some loci were found to deviate from
selective neutrality, and allele frequencies were related
to key climate and geographic parameters, whereas on
the whole, the genetic diversity of the populations
studied reflected their geographic relationships.
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