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We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association 
studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new 
asthma loci, found two new associations at two known asthma loci, established asthma associations at two loci previously 
implicated in the comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large 
overlaps in genetic variants with autoimmune and inflammatory diseases. The enrichment in enhancer marks at asthma risk 
loci, especially in immune cells, suggested a major role of these loci in the regulation of immunologically related mechanisms.

Asthma is a complex disease affecting hundreds of millions of 
people worldwide. The prevalence of asthma varies across 
populations and ancestral origins; for example, in the US, 

the prevalence ranges from 3.9% in Mexican Americans to 12.5% in 
African Americans1. The contribution of genetic factors to asthma 
risk has been demonstrated in family studies, in which heritabil-
ity estimates range from 25% to 80% (ref. 2). The high variability 
in prevalence and heritability estimates reflects the roles of envi-
ronmental exposure in the disease risk and phenotypic heterogene-
ity that are hallmarks of asthma. These features may explain why 
genome-wide association studies (GWAS) have identified a smaller 
number of asthma loci than have been found in similarly sized stud-
ies of other multifactorial diseases3. Indeed, at the time of analysis, 
only 21 loci have been associated with asthma per se in 20 stud-
ies, and these loci explain only part of the genetic risk. Although 
an exome-array study has shown no evidence of low-frequency 
or rare variants with large effects on asthma risk4, the role of rare 
noncoding variants in asthma remains unknown. Future stud-
ies based on whole-genome sequencing may clarify the respective 
influence of common and rare variants on asthma risk. To generate 
larger sample sizes for GWAS meta-analysis of asthma and thereby 
enable the discovery of new common risk loci, we established the 
Trans-National Asthma Genetic Consortium (TAGC), comprising 
worldwide groups of investigators, which has analyzed genome-
wide data available in 142,000 individuals of diverse ancestries. We 
constructed a comprehensive catalog of asthma risk variants that 
are robust across populations and environmental-exposure condi-
tions. By combining TAGC meta-analysis results with data from 
existing databases, we assessed the genetic architecture of asthma 
risk alleles with respect to functional effects and shared effects with 
other diseases.

Results
Meta-analysis of asthma GWAS. We combined data from asthma 
GWAS with high-density genotyped and imputed SNP data (2.83 
million SNPs) in the following populations: European ancestry 
(19,954 asthma cases, 107,715 controls), African ancestry (2,149 
asthma cases, 6,055 controls), Japanese ancestry (1,239 asthma 
cases, 3,976 controls), and Latino ancestry (606 asthma cases, 792 
controls) (Supplementary Table 1). After extensive quality control 
of summary data provided by each participating group (Methods, 
Supplementary Note and Supplementary Table  2), we conducted 

ancestry-specific meta-analyses, then performed a multiancestry 
meta-analysis of all populations (23,948 asthma cases, 118,538 con-
trols) to identify additional loci with panancestry effects. Because 
childhood-onset asthma may be distinct from later-onset asthma5 
and may represent a more homogeneous subgroup, we also per-
formed analyses on the pediatric subgroup (asthma onset ≤ 16 
years; 8,976 asthma cases, 18,399 controls). Meta-analyses of SNP 
effect sizes obtained from each asthma GWAS were performed with 
fixed-effects (significance of the combined SNP effect size sum-
marized in Pfixed) and random-effects (Prandom) models (Methods), 
and a conventional Prandom (or Pfixed) threshold of 5 ×  10−8 was used 
to define genome-wide significance. The results were consistent 
between methods for detecting loci with at least one SNP signifi-
cantly associated with asthma. We therefore present the results from 
the random-effects analysis for the European-ancestry and multian-
cestry meta-analyses, which included the largest number of studies 
and allowed for an accurate estimate of the between-study vari-
ance, and the results from the fixed-effects analysis for the African-
ancestry, Japanese-ancestry, and Latino-ancestry meta-analyses. We 
observed little evidence of inflation in the test statistics in either the 
ancestry-specific (European ancestry, λ =  1.031; African ancestry, 
λ =  1.014; Japanese ancestry, λ =  1.021; Latino ancestry, λ =  1.044) 
or multiancestry (λ =  1.046) meta-analyses (Supplementary Fig. 1).

We identified 673 genome-wide-significant SNPs (Prandom  
≤ 5 ×  10−8) at 16 loci in European-ancestry populations (Fig.  1a, 
Table  1 and Supplementary Tables  3 and 4; locus definition in 
Methods). No genome-wide-significant risk loci were detected 
in African-ancestry, Japanese-ancestry, or Latino-ancestry popu-
lations (Supplementary Fig.  2 and Supplementary Tables  5–7), 
possibly because of a lack of power. In the combined multiances-
try meta-analysis, 205 additional SNPs were significant (Prandom 
≤ 5 ×  10−8), including 12 SNPs at two loci not detected in the 
European-ancestry analysis (Fig.  1b, Table  1 and Supplementary 
Tables 3 and 8). Altogether, 878 SNPs at 18 loci reached genome-
wide significance, of which 69% were significant in both European-
ancestry and multiancestry meta-analyses, 23% were significant in 
only the multiancestry meta-analysis, and 8% were significant in 
only the European-ancestry meta-analysis (Supplementary Tables 4 
and 8; regional plots of the 18 loci in Supplementary Fig. 3). All 18 
loci remained genome-wide significant after further genomic con-
trol correction of the test statistics, thus confirming the robustness 
of these results (Supplementary Table 9).

Multiancestry association study identifies new 
asthma risk loci that colocalize with immune-cell 
enhancer marks
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The 18 chromosomal regions included five new loci associated 
with asthma at 5q31.3, 6p22.1, 6q15, 12q13.3, and 17q21.33; two new 
associations at 6p21.33 and 10p14 that were independent of previ-
ously reported signals at these loci in ancestry-specific populations 
(Latino6 and Japanese7 ancestries, respectively); two associations at 
8q21.13 and 16p13.13 that were previously reported for asthma plus 
hay fever but not for asthma alone in a study of European-ancestry 
populations8; and nine previously identified asthma loci.

None of the lead SNPs at the 18 loci showed evidence of hetero-
geneity in effect sizes across studies except for the lead variant at 
9p24.1 (Phet for Cochran’s Q test9 =  0.008 across European-ancestry 
studies and Phet =  0.02 across multiancestry studies; Table  1 and 
Supplementary Fig. 4). There was also significant evidence of het-
erogeneity in the ancestry-specific effect sizes (Pethnic =  0.003) for the 
6p22.1 lead SNP rs1233578, which consequently did not reach sig-
nificance in the multiancestry analysis (Table 1 and Supplementary 
Table 3). The meta-analysis of the pediatric subgroup showed evi-
dence of association (Prandom ≤ 5 ×  10−8) at five of the 18 loci (2q12, 
5q31, 6p21.33 9p24.1, and 17q12-21) (Supplementary Figs. 5 and 6 

and Supplementary Table 10). No loci specific to the pediatric sub-
group were identified.

The results provided genome-wide-significant confirmation of 
nine previously reported loci in both the European-ancestry and 
multiancestry meta-analyses (Table 1 and Supplementary Figs. 3b 
and 4). Our results allowed for detailed analysis of the broad 17q12-
21 locus. Notably, the lead SNP (rs2952156) at this locus was within 
ERBB2 (Prandom =  2.2 ×  10−30 in multiancestry meta-analysis), at least 
180 kb from the previously recognized asthma-associated signals 
at the GSDMB/ORMDL3 haplotype block3 (Supplementary Fig. 7). 
This result was attributable to effect-size heterogeneity across stud-
ies (0.001 ≤  Phet ≤  0.05) that extended over a 200-kb region including 
ORMDL3 and GSDMB (Supplementary Table  11). This hetero-
geneity was partly due to the age of asthma onset, as previously 
reported5. Indeed, in the pediatric group, the 17q12-21 SNPs did 
not show heterogeneity (Phet ≥ 0.09), and the lead SNP rs8069176 
was 3.6 kb proximal to GSDMB (Prandom =  Pfixed =  4.4 ×  10−26),  
in agreement with results from previous studies3,5. The SNP effect 
sizes in the pediatric and nonpediatric studies showed a significant  
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Fig. 1 | Manhattan plots of the results of european-ancestry and multiancestry random-effects meta-analyses of asthma risk. a, The European-ancestry 
meta-analysis pertains to 19,954 asthma cases and 107,715 controls. b, The multiancestry meta-analysis pertains to 23,948 asthma cases and 118,538 
controls. Each locus is annotated according to its cytogenetic-band location. The x axis represents chromosomal location, and the y axis represents 
–log10(P value) for tests of association between SNPs and asthma. Black, previously known loci; red, new loci identified in the European-ancestry meta-
analysis; blue, additional new loci identified in the multiancestry meta-analysis The dashed horizontal line denotes P =  5 ×  10−8.
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difference for rs8069176 at the GSDMB locus (Phet =  7.4 ×  10−4) 
but no difference for rs2952156 at the ERBB2 locus (Phet =  0.11). 
These two SNPs were in only moderate linkage disequilibrium 
(LD) (r2 =  0.30), and each was in strong LD (r2 > 0.9) with mis-
sense variants localized in ERBB2 for the proxy of rs2952156 and 
in ZPBP2 and GSDMB for the proxies of rs8069176. Moreover, both 
rs2952156 and rs8069176 are associated with expression of GSDMB 
and ORMDL3 in blood10–13, and with the expression of GSDMA, 
CDK12, GSDMB, and ORMDL3 in whole lung tissue12,14. However, 
only rs2952156 is associated with PGAP3 expression in the lung12,14 
(Supplementary Table 12a). Further exploration of expression quan-
titative trait loci (eQTL) data from Genotype-Tissue Expression 
(GTEx)12 indicated that rs8069176 accounted for a large part of the 
association of the most significant SNP with ORMDL3 expression in 
the blood, whereas rs2952156 accounted for a large part of the asso-
ciation of the most significant SNP with PGAP3 expression in the 
lungs (Supplementary Table 12b), thus suggesting that the asthma-
associated signals near the PGAP3/ERBB2 and ORMDL3/GSDMB 
blocks may affect asthma risk through the expression of different 
genes in different tissues.

Finally, of the 21 published asthma loci, 12 did not reach 
genome-wide significance in TAGC (Supplementary Table  13). 
The most significant SNPs in the GWAS catalog3 at seven of those 
loci had P values > 0.01 in TAGC analyses. Among these seven 
nonreplicated loci, two (4q31.21 (ref. 7) and 8q24.11 (ref. 15)) have 
been reported in Japanese individuals, three (4q12, 9p23, and 
10q24.2)16 had SNPs with low minor allele frequency (MAF ≤ 
2%) and have been reported in a childhood-onset asthma study, 
and two (1q31.3 (ref. 17) and 5q12.1 (ref. 18)) have been reported 
in children of European ancestry with asthma defined by current 

or persistent asthma symptoms with regular use of medication. 
The most significant SNPs at the remaining five loci had P values  
≤ 5 ×  10−4 in at least one TAGC meta-analysis, thus providing some 
replication. Among these five loci, (i) the 1q23.1 locus is specific 
to African-ancestry populations19; (ii) the 12q13.2 SNP, reported 
in a study of Japanese individuals7, showed heterogeneity in the 
TAGC Japanese-ancestry meta-analysis as well as the European-
ancestry and multiancestry meta-analyses (Phet ≤ 0.05); and (iii) 
the 7q22.3 SNP, previously reported in European-ancestry popula-
tions20, was associated with a severe form of childhood asthma and 
also showed heterogeneity across studies in the original publica-
tion20 (in which the Prandom value did not reach significance) as well 
as in our study (European-ancestry, multiancestry, and pediatric 
meta-analyses, 0.006 ≤  Phet ≤  0.03). Finally, SNPs at the 1q21.3 and 
22q12.3 loci, previously reported in European-ancestry popula-
tions21,22, did not show significant evidence of heterogeneity across 
TAGC studies in the European-ancestry and multiancestry meta-
analyses (0.11 ≤  Phet ≤  0.19). When we repeated these two meta-
analyses under a fixed-effects model and separately considered the 
set of TAGC datasets that were part of the original publication (set 
P) and the set of remaining TAGC datasets (set R), both 1q21.3 
and 22q12.3 SNPs had higher effect sizes in set P than in set R. 
These differences in effect sizes did not reach significance for 
the 1q21.3 SNP (Phet for Cochran’s Q test of 0.13 and 0.20 in the 
European-ancestry and multiancestry analyses, respectively) and 
were borderline significant for the 22q12.3 SNP (0.04 ≤  Phet ≤  0.06) 
(Supplementary Table 14). Altogether, these results suggested that 
the lack of replication was mainly due to heterogeneity attributable 
to various factors, such as ancestry, specificity of clinical pheno-
types, or other factors, as further discussed below.

Table 2 | Main characteristics of the nine loci showing new associations with asthma

Locusa Location of lead 
sNPb

cis eQtLs in blood (B) and  
lung tissue (L)

association with allergy-related 
and lung-function phenotypes

association with autoimmune 
diseases and other immunologically 
related traits

New asthma susceptibility loci
 5q31.3 NDFIP1 (intron) B: NDFIP1 (2.7 ×  10−9) IBD

 6p22.1 Intergenic B: ZSCAN12 (3.0 ×  10−8)  
L: ZSCAN31 (6.5 ×  10−11)

Lung function

 6q15 BACH2 (intron) B: BACH2 (3.0 ×  10−10) MS, T1D, CD, IBD, V, IGG

 12q13.3 STAT6 (intron) B: STAT6 (9.8 ×  10−198)  
L: STAT6 (3.7 ×  10−37)

IgE (total, specific), lung function Pso, ISP_IFN

 17q21.33 Intergenic B: GNGT2 (2.1 ×  10−52) Atopic dermatitis ISP_IL2

New asthma signals at loci previously associated with asthma in ancestry-specific populations
 6p21.33 MICB (intron) B: TNF (4.8 ×  10−14), LST1 (1.0 ×  10−13), 

HLA-C (3.2 ×  10−13), LTA (1.0 ×  10−10) 
L: MICB (4.6 ×  10−13)

IgE (total, specific), self-reported 
allergy, atopic dermatitis, lung 
function

SLE, UC, RA, IBD, BS, GD, SS, AS, Pso, 
UC, V, WBC, MoC, DS, HIV-1, SJS, HB, 
HBV, IMN, CD4/CD8 ratio, HIV-1C

 10p14 Intergenic None Self-reported allergy RA, ISP_IL1B, ISPV

asthma signals previously reported for asthma plus hay fever
 8q21.13 Intergenic None Atopic dermatitis, asthma plus hay 

fever, self-reported allergy
RA

 16p13.13 CLEC16A (intron) B: DEXI (2.2 ×  10−43) Atopic dermatitis, asthma plus hay 
fever

T1D, PBC, MS, RA, IBD, CD, LEP

At each of the nine loci showing new associations with asthma, cis genes whose expression (eQTLs) is associated with the lead asthma-associated SNPs (shown in Table 1) or SNPs in LD (r2 ≥ 0.5) with 
the lead SNPs were searched in six eQTL databases from whole blood11,12, lymphoblastoid cell lines10,13, monocytes23, and lung tissue12,14; only genes with the strongest associations (P < 5 ×  10−8, as shown in 
parentheses) are presented here (details in Supplementary Table 16). Overlap of these nine loci with associations with allergy-related and lung-function phenotypes as well as with autoimmune diseases 
and other immunologically related traits was annotated with the GWAS catalog3; IBD, inflammatory bowel disease (Crohn’s disease), MS, multiple sclerosis, T1D, type 1 diabetes, CD, celiac disease, 
V, vitiligo, IGG, IgG glycosylation, Pso, psoriasis, ISP_IFN, immune response to smallpox (secreted IFN-α ), ISP_IL2 immune response to smallpox (secreted IL2), SLE, systemic lupus erythematosus, 
UC, ulcerative colitis, RA, rheumatoid arthritis, BS, Behçet syndrome, GD, Grave’s disease, SS, systemic sclerosis, AS, ankylosing spondylitis, WBC, white blood cell count, MoC, monocyte count, DS, 
dengue shock, HIV-1, HIV-1-susceptibility, SJS, Stevens–Johnson syndrome, HB, hepatitis B infection, HBV, hepatitis B vaccine response, IMN, idiopathic membranous nephropathy, CD4/CD8, CD4/
CD8 lymphocyte ratio, HIV-1C, HIV-1 control, ISP_IL1B, immune response to smallpox (secreted IL-1β ), ISPV, immune response to smallpox vaccine (IL-6), PBC, primary biliary cirrhosis, LEP, leprosy. 
aCytogenetic band. bThe protein-coding genes flanking intergenic SNPs are shown in Table 1.
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To investigate whether the 18 asthma loci identified in this study 
contained multiple distinct signals, we performed approximate 
conditional regression analysis, based on summary statistics, for 
all loci (Methods), except for the 9p24.1 region, which showed het-
erogeneity in SNP effect size across studies over the entire locus. 
For the 17q12-21 locus, this analysis was restricted to the pediatric 
subgroup in which there was no heterogeneity. After condition-
ing on the lead SNP in each investigated region, four secondary 
signals (2q12, 5q22.1, 5q31, and 6p21.32) remained significant 
(Pfixed ≤  5 ×  10−8) (Supplementary Table 15), thus yielding 22 distinct 
genome-wide-significant signals.

To provide biological insight into our findings, we conducted a 
comprehensive bioinformatic assessment of the asthma-association 
signals. To pinpoint the most likely candidate genes at the nine 
loci with new associations with asthma per se, we  interrogated 
the results of six eQTL studies in tissues relevant to asthma: blood 
(including peripheral blood11,12, lymphoblastoid cell lines10,13, and 
monocytes23), and whole lung tissue12,14.  We also searched for mis-
sense variants potentially tagged by the association signals, using 
the HaploReg v4.1 tool (URLs). To assess the degree of overlap of 
asthma associations with susceptibility loci for other phenotypes, 
we interrogated the GWAS catalog3 while varying the strength of 
association with asthma (thresholds from 5 ×  10−8 to 10−3). To obtain 
greater insight into how asthma-associated variants might function-
ally influence disease, we interrogated the Roadmap/Encyclopedia 
of DNA Elements (ENCODE) functional genomics data generated 

from a wide range of human cell types24. Finally, the degree of con-
nectivity among the asthma-associated loci was assessed through 
text mining25. The results are described below.

Candidate genes at the nine loci showing new associations. A 
summary of the eQTL analysis for these nine loci is described in 
Table  2 and Supplementary Table  16; regional plots are shown in 
Supplementary Fig. 3a.

New asthma susceptibility loci. Five new loci were identified in this 
study. The strongest new signal in both the European-ancestry 
(Prandom =  8.6 ×  10−13) and multiancestry (Prandom =  2.2 ×  10−12) meta-
analyses was for SNP rs2325291 in an intron of BACH2 at 6q15, 
which was strongly correlated with rs10455168 (r2 =  0.91), a cis 
eQTL altering expression of BACH2 in the blood11. BACH2 encodes 
a ZIP transcription factor that regulates nucleic-acid-triggered anti-
viral responses in human cells26. The second-strongest signal in the 
European-ancestry and multiancestry analyses was for rs17637472 
(Prandom =  3.3 ×  10−9 and 6.6 ×  10−9), which is located between 
ZNF652 and PHB at 17q21.33 and is a strong cis eQTL for GNGT2 
(173 kb from rs17637472) in the blood10,11,13,23. GNGT2 interacts 
with β -arrestin 1 and consequently promotes G-protein-dependent 
AKT signaling in NF-κ B activation27.

Among the other new signals, the lead SNP rs1233578 at 6p22.1 
(Prandom =  5.3 ×  10−9 in European-ancestry populations) was located 
between TRIM27 and GPX5. This SNP was not associated with gene 
expression in the blood or lungs but was in LD (r2 =  0.6 in European-
ancestry populations) with rs7766356 (312 kb from rs1233578), 
which is a cis eQTL for ZSCAN12 in the blood13 and ZSCAN31 in 
the lungs14. These genes encoding zinc-finger proteins are associ-
ated with lung function28. The two SNPs rs1233578 and rs7766356 
represented the same association signal in European-ancestry popu-
lations (the association with rs7766356 became nonsignificant after 
conditioning on the lead SNP rs1233578). The 12q13.3 lead SNP 
(rs167769), which was significant only in the multiancestry analy-
sis (Prandom =  3.9 ×  10−9), was located within an intron of STAT6 and 
is strongly associated with STAT6 expression in the blood10,11,13 and 
lungs14. STAT6 is a transcription factor that is essential for the TH2-
lymphocyte functional responses mediated by IL-4 and IL-13 (ref. 29).  
This result established the association of STAT6 with asthma risk 
that has been disputed in candidate-gene studies30. The 5q31.3 lead 
SNP rs7705042 (Prandom =  7.9 ×  10−9 in multiancestry analysis) was 

Table 3 | Overlap of taGc asthma-associated sNPs with 
GWas-catalog association signals by disease group

Disease group Number of 
GWas-
catalog 
association 
signals

Number 
of sNPs 
associated 
with asthma 
at Prandom ≤ 
10−4 in the 
multiancestry 
meta-analysis

P value for 
overlap

Cardiovascular 743 20 7.8 ×  10−42

Body size and morphology 346 2 5.0 ×  10−4

Immune/autoimmune 480 49 3.0 ×  10−129

Nervous system 242 4 1.4 ×  10−8

Blood 594 10 1.3 ×  10−19

Neuropsychiatric 114 5 1.5 ×  10−12

Cancer 417 7 4.0 ×  10−14

Endocrine system 276 2 4.0 ×  10−4

Digestive system 347 16 1.4 ×  10−37

Eyes 177 2 2.0 ×  10−4

Respiratory system 85 2 3.6 ×  10−5

Infectious disease/infection 104 2 5.3 ×  10−5

Urinary system 144 1 1.5 ×  10−2

Alcohol, smoking, and illicit 
substances

30 0 1

Musculoskeletal system 132 0 1

Overlap of TAGC asthma-associated SNPs with association signals of all diseases/traits in the 
GWAS catalog3 was investigated for all TAGC SNPs with Prandom ≤ 10−4 in the multiancestry meta-
analysis; diseases from the GWAS catalog were grouped according to the disease classification 
proposed by Wang et al.37 (the ‘digestive system’ group includes Crohn’s disease, a subtype of 
inflammatory bowel disease). The significance of overlap was estimated with the binomial-tail 
probability for observing the shown number of TAGC asthma SNPs among the number of SNPs 
reported in the GWAS catalog for a group of diseases (for example, the probability of observing 
≥ 20 asthma SNPs with Prandom ≤ 10−4 among the 743 cardiovascular SNPs is shown in the last 
column); a conservative Bonferroni-adjusted significance threshold for enrichment in shared 
associations is 0.05/15 =  0.003 (for the 15 disease groups investigated).

Table 4 | enrichment of asthma risk loci in promoter and 
enhancer marks and DNase i–hypersensitive sites

Proportion of all cell types (blood cell 
types) showing enrichment with a given 
FDR

type of regulatory elements FDR ≤ 10% FDR ≤ 5%

All promoter states 6% (26%) 0

Active promoter states 13% (33%) 0

All enhancer states 57% (100%) 44% (89%)

Active enhancer states 66% (100%) 50% (100%)

DNase I–hypersensitive sites 16% (50%) 12% (40%)

The colocalization of SNPs at asthma risk loci with regulatory elements (promoters, enhancers, 
and DNase I–hypersensitive sites) was assessed at 16 asthma loci identified in this study (Table 1); 
the 6p21.33 and 6p21.32 loci encompassing the HLA region were excluded because of the high 
amount of variability and LD in that region. Enhancer and promoter states were defined with the 
ChromHMM 15-state model applied to functional data of 127 Roadmap and ENCODE reference 
epigenomes in various cell types (including 27 leukocytes)24. DNase I–hypersensitive sites were 
identified in 51 cell types (including ten leukocytes)24. Empirical P values for enrichment were 
obtained through 10,000 Monte Carlo simulations of random sets of SNPs matching the original 
set of asthma-associated SNPs40; Benjamini–Hochberg FDR was calculated to correct for multiple 
testing (details in Methods).
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located within an intron of NDFIP1 and is associated with NDFIP1 
expression in the blood11–13. NDFIP1 is a potent inhibitor of the 
antiviral response31 and inflammation processes32.

New asthma signals at loci reported in specific populations. Two asso-
ciations in our study were with new SNPs at loci previously reported 
to be associated with asthma in people of Latino6 and Japanese7 
ancestry. The first one, at 6p21.33, has previously been reported in 
an admixture mapping study in Latino individuals6. The lead TAGC 
SNP rs2855812 (Prandom =  8.9 ×  10−12 in the multiancestry analysis; 
Prandom =  1.7 ×  10−8 in the European-ancestry meta-analysis) was 
located within an intron of MICB. This SNP was not correlated 
(r2 =  0) with any of the SNPs reported in the study of Latino indi-
viduals6. The 6p21.33 region contains many genes whose transcripts 
are associated with TAGC asthma signals, including TNF, LST1,  
HLA-C, and LTA in the blood10,11,13, and MICB in the lungs12,14. 
These genes are involved in immunologically related mechanisms. 
This 6p21.33 locus is approximately 600 kb from the previously 
reported 6p21.32 locus that spans HLA class II genes. Intensive 
sequencing efforts will be needed to further clarify the HLA-region 
associations. The second association was at the 10p14 locus, where 
a GWAS in Japanese individuals7 has reported an association (lead 
SNP rs10508372) with adult asthma. We detected a new signal, 
rs2589561, in European-ancestry (Prandom =  1.4 ×  10−8) and multi-
ancestry meta-analyses (Prandom =  3.5 ×  10−9) that was not correlated 
with rs10508372 in either European-ancestry or Japanese-ancestry 
populations. The SNP rs2589561 is in a gene desert, 929 kb from 
GATA3. However, recently published promoter-capture Hi-C data 
in hematopoietic cells33 has shown that two proxies of rs2589561 
(r2 > 0.9) are located in a region that interacts with the GATA3 pro-
moter, especially in CD4+ T cells. These findings suggest that the 
SNP may be in a distal regulator of GATA3, which encodes a tran-
scription factor that is a master regulator of differentiation of TH2 
cells and type 2 innate lymphoid cells (ref. 34).

Asthma signals reported for asthma plus hay fever. In one study of 
individuals of European-ancestry, loci on chromosomes 8q21.13 
and 16p13.13 have been associated with asthma plus hay fever 
but not with asthma alone8. In our results, the 8q21.13 lead SNP 
rs12543811 (Prandom =  3.4 ×  10−8 and 1.1 ×  10−10 in the European-
ancestry and multiancestry analyses) was located between TPD52 
and ZBTB10 and was in strong LD (r2 =  0.79) with the previously 
reported asthma/hay fever SNP rs7009110. These two SNPs rep-
resented the same signal, because the association with rs12543811 
became nonsignificant after conditioning on rs7009110. Thus, the 
8q21.13 locus is likely to be associated with allergic asthma. A func-
tional analysis of the asthma/hay fever locus pinpointed PAG1 as a 
promising candidate35. The chromosome 16p13.13 SNP rs17806299 
is within an intron of CLEC16A (Prandom =  2.1 ×  10−10 and 2.7 ×  10−10 
in European-ancestry and multiancestry meta-analyses). Although 
it was in moderate LD (r2 =  0.66) with the previously reported 
asthma/hay fever signal (rs62026376)8, the association of asthma 
with rs17806299 was removed after conditioning on rs12935657 
(r2 =  0.96 with rs62026376), thus indicating that these SNPs rep-
resented the same signal and that 16p13.13 was probably also an 
allergic asthma locus. The SNP rs17806299 is strongly associated 
with the expression of a nearby gene, DEXI in the blood11,23. Similar 
observations of associations of CLEC16A SNPs with autoimmune 
diseases and expression of DEXI together with chromosome- 
conformation-capture experiments have implicated DEXI as the 
most likely candidate gene associated with autoimmune diseases36. 
The potential relevance of DEXI in allergic diseases has also been 
previously discussed8.

Notably, the lead SNPs at the nine new asthma-associated loci 
were located in noncoding regions and did not tag missense variants.

Overlap of loci associated with asthma and other phenotypes. 
We next explored whether the nine loci bearing new signals for 
asthma per se overlapped with GWAS loci reported for allergy-
related phenotypes, lung-function phenotypes, or other immuno-
logically related diseases, by using the GWAS catalog3. Six of these 
nine asthma loci showed overlapping associations with allergy-
related phenotypes, and eight showed overlapping associations with 
autoimmune diseases or infection-related phenotypes (Table  2). 
Moreover, three asthma loci overlapped with associations with 
lung-function phenotypes.

We expanded our search of overlap between  the asthma-asso-
ciation signals with multiancestry Prandom < 10−4 in this study and 
GWAS signals with all phenotypes and diseases in the GWAS cata-
log3. We examined 4,231 unique trait–loci combinations (Methods) 
and used the disease classification from Wang et al.37 to group traits. 
We summarized the overlap with GWAS-catalog signals as the pro-
portion of catalog SNPs with asthma P values < 10−4 in our analysis. 
The results showed significant overlap with autoimmune disease 
(49 out of 480 catalog SNPs  (10%) showed evidence for asthma 
association), in agreement with the hypothesized shared suscep-
tibility38,39; moderate overlap with diseases with an inflammatory 
component (cardiovascular diseases, cancers, and neuropsychiat-
ric diseases); and little to no overlap with other diseases (Table 3). 
When investigating specific diseases and traits (Supplementary 
Table  17), we observed the most significant overlap with allergic 
phenotypes. There was little to no overlap with other phenotypes 
that appeared most frequent in the GWAS catalog (for example, no 
shared associations with type 2 diabetes).

When we broadened our analysis to a larger set of SNPs in the 
GWAS catalog to identify loci for diseases with potentially shared 
genetic architecture with asthma (i.e., SNPs associated with asthma 
at Prandom ≤ 10−3 in our multiancestry meta-analysis), additional 
pleiotropic signals emerged (Supplementary Table 18). This larger 
set of associations suggested a broader picture of asthma risk, with 
a wide range of shared effects with traits ranging from lung cancer 
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and multiple sclerosis (with rs3817963 in BTNL2) to coronary heart 
disease (with rs1333042 near CDKN2B). This analysis also gener-
ated an extended set of candidate asthma-associated genes. Indeed, 
there were 210 SNPs in the GWAS catalog that were associated with 
asthma in TAGC at a threshold of 10−3, and the proportion of false 
positives among these was smaller than 1%.

Enrichment of asthma risk loci in epigenetic marks. Because 
nearly all lead SNPs at the 18 loci identified by this study, except 
for the IL13 missense variant (rs20541), were located in noncoding 
sequences, we investigated whether the asthma-associated variants 
and their proxies (r2 ≥ 0.80) might be concentrated in cis-regulatory  
DNA elements. We explored only 16 of 18 identified asthma loci, 
excluding the two loci spanning the HLA region because of the 
region’s high variability and extensive LD. We interrogated the 
111 Roadmap and 16 ENCODE reference epigenomes in a wide 
range of human cell types24, focusing on histone marks character-
izing enhancers and promoters assayed in all 127 epigenomes and 
DNase I–hypersensitive sites available in 51 cell types. To assess 
enrichment of the asthma risk variants for colocalization with these 
regulatory elements, we used the Uncovering Enrichment through 
Simulation (UES) pipeline40. This approach generates random SNP 
sets that match the characteristics of the original asthma-associated 
SNPs (distance from the nearest transcription start site, number of 
LD partners, and MAF). Empirical P values for enrichment were 
calculated by comparing the observed frequency of colocalization of 
SNPs with a given type of regulatory element in the original asthma-
associated SNP set to the co-localization-frequency distribution 
obtained from the 10,000 random SNP sets generated. Benjamini–
Hochberg false discovery rate (FDR) values were then computed to 
correct for multiple testing (Methods).

Although the asthma-associated variants were strongly enriched 
for colocalization with enhancer marks, there was only weak enrich-
ment in promoter marks (Table  4 and Supplementary Table  19). 
This enrichment was highest in leukocytes (27 leukocytes, of which 
19 (70%) were lymphocytes and monocytes). For example, an FDR  
≤ 5% for enrichment of asthma loci in active enhancers was observed 
in 100% of leukocytes compared with 50% of all cell types. The 
enrichment of asthma risk variants for colocalization with DNase 
I–hypersensitive sites was intermediate between the enrichments 
in promoters and enhancers and was again elevated in blood cells 
(FDR ≤ 5% in 40% of leukocytes and 12% of all cell types) (Table 4 
and Supplementary Table 20).

The strong enrichment of asthma loci in enhancer marks, espe-
cially in immune cells, indicated that the associated genetic vari-
ants are likely to be involved in the regulation of immunologically 
related functions. This finding also suggested that epigenetic mech-
anisms may be key to promoting asthma, as evidenced by IgE levels, 
an asthma-associated phenotype41.

Connectivity among asthma-associated loci. To characterize the 
degree of connectivity among the 18 asthma-associated loci, we 
applied the Gene Relationships Across Implicated Loci (GRAIL) 
text-mining approach25. Genes at 11 of these loci showed connec-
tions with a GRAIL score PGRAIL < 5% (and seven of them were highly 
connected, with PGRAIL < 10−3) (Fig. 2 and Supplementary Table 21). 
These genes were connected through keywords such as ‘asthma’, 
‘allergy’, ‘atopic’, ‘interleukin’, ‘cytokines’, ‘airway’, and ‘inflammation’, 
thus confirming the central role of immunologically related mecha-
nisms accounting for these connections.

Discussion
In this meta-analysis of worldwide asthma GWAS in ethni-
cally diverse subjects, we identified nine new loci influencing 
asthma risk. Our findings confirm that immunologically related 
mechanisms are prominent in asthma susceptibility and provide 

new insights that may open new avenues for future asthma research. 
The asthma-associated loci identified by TAGC are enriched in 
enhancer marks and are likely to be involved in gene regulation. 
Although these findings were observed in immune cells, asthma-
associated genes (e.g., IL1RL1, TSLP, IL33, and ORMDL3/GSDMB) 
are also expressed in the airway epithelium, where they modulate 
airway inflammation. Investigation of epigenetic marks in airway 
epithelial cells may provide additional insight. The best candi-
dates at many loci are involved in immune responses to viruses or  
bacteria, thereby underscoring the importance of infections in 
asthma risk. This study further provides evidence of an overlap of 
asthma loci with loci underlying autoimmune diseases and other 
diseases with an inflammatory component, thereby strengthening 
the growing understanding of the importance of pleiotropy in mul-
tifactorial diseases.

Our meta-analysis doubles the number of asthma cases analyzed 
in prior genome-wide studies21,22 at the time of analysis. We identi-
fied 878 SNPs corresponding to 22 distinct association signals at 
18 loci meeting criteria for genome-wide significance in European-
ancestry and/or multiancestry populations. Pooling data from eth-
nically diverse populations can increase the power to detect new 
loci (in this study, two loci reached the genome-wide threshold only 
in the multiancestry analysis) but may also increase heterogeneity. 
Beyond differences in the genetic background, varying environmen-
tal-exposure conditions can modify genetic risk and result in het-
erogeneity in SNP effect size, and consequently make the power of 
multiancestry analysis lower than that of ancestry-specific analysis. 
If asthma prevalence is assumed to be 10%, the variance in asthma 
liability explained by the 22 distinct genome-wide-significant vari-
ants in this study was estimated to be 3.5% (95% confidence interval 
2.0–5.4%) of which 72% was accounted for by the known loci, and 
28% was accounted for by the new loci. Notably, the current study 
was based on HapMap2-imputed data, which were shared within 
the TAGC consortium and thus allowed for detection of associa-
tions with common genetic variants (MAF ≥ 1%).

The overall relative paucity of asthma risk loci detected by large-
scale GWAS, as compared with the number of risk loci identified 
for other common diseases, may be due to the clinical heteroge-
neity of asthma and the important etiological role of differing 
environmental-exposure conditions. Asthma is thought to be not 
a single disease but a syndrome that varies according to many 
characteristics42, including the age of asthma onset, the severity of 
disease, the type of cellular inflammatory infiltrates, occupational  
exposure, and the varying response to treatment. It is thus possible 
that additional asthma loci may be identified by studies targeting 
more specific asthma subphenotypes and/or considering environ-
mental exposure.

In conclusion, future discoveries might result from exploring 
more complex models of asthma phenotypes and from joint analysis 
of asthma and other immunologically mediated and inflammatory 
diseases. The central role of gene-regulatory mechanisms high-
lighted by our study might prompt genome-wide exploration of the 
epigenome in immune cells and the respiratory epithelium while 
integrating information on genetic variation and environmental-
exposure histories.

URLs. National Human Genome Research Institute (NHGRI) 
and European Bioinformatics Institute (EBI) catalog of published 
genome-wide association, https://www.ebi.ac.uk/gwas/; 1000 
Genomes Project Consortium Phase 3, http://www.internation-
algenome.org/; Genome-wide Complex Trait Analysis (GCTA), 
http://cnsgenomics.com/software/gcta/; Blood eQTL browser, 
https://omictools.com/blood-eqtl-browser-tool; GTEx, http://
www.gtexportal.org/; Multiple Tissue Human Expression Resource 
(MuTHER) database, http://www.muther.ac.uk/; eQTL database 
in lymphoblastoid cell lines from MRCA and MRCE families,  
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https://www.hsph.harvard.edu/liming-liang/software/eqtl/; GHS-
Express, http://genecanvas.ecgene.net/; HaploReg v4.1, http://
archive.broadinstitute.org/mammals/haploreg/haploreg.php/; 
Roadmap and ENDCODE epigenomics data, http://egg2.wustl.
edu/roadmap/web_portal/; UES pipeline, https://github.com/
JamesHayes/uesEnrichment/; GRAIL, https://software.broadin-
stitute.org/mpg/grail/; Visualizing GRAIL connections (VIZ-
GRAIL), http://software.broadinstitute.org/mpg/grail/vizgrail.
html; LocusZoom, http://locuszoom.org/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-017-0014-7.
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Methods
GWAS and shared data. All 66 GWAS from the TAGC consortium are described 
in the Supplementary Note and are summarized in Supplementary Table 1. These 
GWAS included 56 studies of individuals of European ancestry (19,954 asthma 
cases, 107,715 controls), seven studies of individuals of African ancestry (2,149 
asthma cases, 6,055 controls), two studies of individuals of Japanese ancestry (1,239 
asthma cases, 3,976 controls), and one study of individuals of Latino ancestry 
(606 asthma cases, 792 controls), with a total of 23,948 asthma cases and 118,538 
controls. There were 27 studies including only childhood-onset asthma (defined 
as asthma diagnosed at or before 16 years of age), thus allowing us to separately 
analyze a pediatric subgroup (8,976 asthma cases, 18,399 controls). All subjects 
provided informed consent to participate in genetic studies, and the local ethics 
committee for each individual study approved the study protocol. The definition 
of asthma was based on physicians’ diagnoses and/or standardized questionnaires 
(details in Supplementary Note). The samples were genotyped on a variety of 
commercial arrays, as detailed in the Supplementary Note and Supplementary 
Table 2. GWAS were performed on imputed SNP data that were generated 
with HapMap2 as the reference panel in one of the commonly used imputation 
programs (Supplementary Note and Supplementary Table 2). In each dataset, the 
effect of each individual SNP on asthma, assuming an additive genetic model, was 
estimated through a logistic-regression-based approach and is expressed in terms 
of a regression coefficient with its standard error; the detailed methodology and 
software used for analysis in each study can be found in the Supplementary Note 
and Supplementary Table 2.

Imputation, quality control (including adjustments for population 
stratification), and analysis were performed by each group independently, and 
data on a predefined set of 3,952,683 autosomal SNPs were shared. These SNPs 
were those of the HapMap Phase 2, release 21 panel in subjects of European, 
Asian, and African ancestry that were filtered through SNP annotation from build 
37.3 of the reference sequence and dbSNP b135 (31,587 SNPs (0.8% of all SNPs) 
from previous annotations that showed discrepancies with the chosen annotation 
were deleted). The variables that were shared contained the study name, general 
information on SNPs (rsID, chromosome, position, alleles (baseline and effect 
alleles as used in the analysis by each study), SNP status (imputed or genotyped 
SNP and whether the SNP genotype or imputed value was used in computation), 
quality control (QC) indicators (call rate and P value for the Hardy–Weinberg 
(HW) equilibrium test for genotyped SNPs, software used for imputation, and 
imputation quality score for imputed SNPs), allele frequencies in individuals 
with asthma and control individuals, and information on association statistics 
(regression coefficient for SNP effect, standard error of regression coefficient,  
Z scores, and P values associated with Z-score statistics).

Quality control of shared data. For each SNP, the alleles on the HapMap2 
template (reference and alternate alleles on the positive strand) were compared 
with the alleles (baseline and effect alleles) used in the analysis by each group. 
When necessary, the association variables (allele frequencies, regression coefficient 
for SNP effect, and Z score) were switched to match the reference/alternate alleles 
of the template. Data for each SNP showing any ambiguity or error in assignment 
to the template were set to missing. In addition, several QC checks were performed 
regarding the name, format, range of possible values for all shared variables 
mentioned in the previous paragraph, and consistency across variables. Any 
problem or inconsistency was corrected; otherwise, the data for that SNP were set 
to missing. After this first stage of QC, association statistics for at least one SNP in 
at least one study were available for 2.83 million autosomal SNPs. Strict QC criteria 
were used for inclusion of a SNP in the analysis. When a SNP genotype was used 
in the study analysis, these criteria were call rate ≥ 99%, P value for HW test ≥ 10−6, 
and MAF ≥ 0.01 in both controls and affected individuals. When an imputed SNP 
value was used in the analysis, the criteria were imputation quality score ≥ 0.5 and 
MAF ≥ 0.01 in both controls and asthma cases. The distribution of the summary 
statistics (regression coefficient for SNP effect, standard error, and Z score) of all 
SNPs passing QC was examined for each study; SNPs that still showed extreme  
Z scores (≥ 7 or ≤ –7) after QC were excluded.

Meta-analysis of asthma GWAS. We conducted fixed-effects meta-analysis with 
inverse variance weighting and random-effects meta-analysis, using the Der 
Simonian and Laird43 estimator of the between-study variance, when the meta-
analyses included a large number of studies (European-ancestry, multiancestry 
and pediatric-subgroup meta-analyses), thus allowing for an accurate estimate of 
the between-study variance. We used a fixed-effects model for the meta-analyses 
of the African-ancestry, Japanese-ancestry, and Latino-ancestry populations. For 
all these meta-analyses, we used the SNP regression coefficient and standard error 
from each study for which the SNP passed QC. All meta-analyses were done with 
Stata version 14.1. To minimize the false-positive findings and to obtain robust 
results, we examined the combined results for SNPs for which at least two-thirds 
of the studies contributed to a meta-analysis. Tests of significance of the combined 
effect sizes were performed by using a standard normal distribution. We applied 
a threshold of Prandom (or Pfixed) of 5 ×  10−8 to declare a combined SNP effect as 
genome-wide significant. To verify the robustness of the results, we applied a 
genomic control correction to the association test statistics. The lead SNP at a 

locus was the variant with the strongest evidence of association in the European-
ancestry or multiancestry meta-analysis. We defined a support interval around the 
lead SNP designated as ‘locus’; the bounds of this interval were the positions of the 
two most extreme SNPs among all SNPs that were located within 500 kb on each 
side of the lead SNP and had Prandom (or Pfixed) ≤ 10−6. The heterogeneity of per-SNP 
effect sizes across all studies in a meta-analysis was assessed with Cochran’s Q test9. 
Differences among the four ethnic-specific summary effects were also tested with 
Cochran’s Q statistic.

Conditional analysis of asthma-associated loci. GCTA software44 (URLs) was 
used to perform approximate conditional analysis for all loci with at least one SNP 
reaching the genome-wide-significance level. This approximate conditional analysis 
is based on the summary meta-analysis statistics obtained under a fixed-effects 
model and takes into account the correlations among SNPs that are estimated 
from a large reference population included in the meta-analysis. Approximate 
conditional analysis was performed in only the European-ancestry group, which 
could be assumed to share a similar LD pattern and was both the largest ancestry-
specific dataset and the only one showing genome-wide-significant results. Because 
this analysis assumes no heterogeneity in SNP effect size across studies, the 9p24.1 
and 17q12-21 loci, which showed significant heterogeneity (Phet ≤ 0.05, Cochran’s 
Q test) for a large portion of each locus, were not investigated. However, for the 
17q12-21 locus, where there was no heterogeneity in the pediatric subgroup, 
GCTA was restricted to the European-ancestry pediatric subgroup. We used the 
large ECRHS dataset as the reference sample to estimate LD. This dataset was 
genotyped with the Illumina Human610Quad array and included 2,101 unrelated 
individuals after QC22. Imputation was performed with MACH software45 and the 
HapMap2, release 21 panel; only well-imputed SNPs (imputation quality score 
rsq > 0.8) with MAF ≥ 1% were retained in this reference sample. For each asthma-
associated locus, the region explored by conditional analysis extended 500 kb on 
each side of the two extreme SNPs defining the support interval around the lead 
SNP (described in preceding paragraph). However, we decreased that extension to 
250 kb for the 6p21.33 and 6p21.32 loci to avoid overlap. The length of the regions 
explored by conditional analysis varied from 1.01 Mb to 1.63 Mb. Within each 
region investigated by conditional analysis, summary effects for SNPs belonging to 
that region were adjusted for the lead SNP by using the --cojo-cond option; tests 
for the adjusted SNP effects were based on the two-sided Wald test. If there was an 
additional SNP meeting the Bonferroni-corrected threshold for the total number 
of SNPs over all regions investigated by GCTA (P =  4.1 ×  10−6), after adjustment 
for the lead SNP, we performed an additional round including both SNPs. If the 
remaining SNPs had P > 4.1 ×  10−6, no further analysis was performed. The results 
of this analysis are reported in Supplementary Table 15.

Identification of cis eQTLs at new asthma risk loci. To obtain greater insight 
into the genes potentially driving the association signals at the new asthma loci, 
we defined a list of SNPs to be interrogated that included the lead SNPs, the 
secondary signals identified by conditional analysis, and all SNPs in LD with these 
SNPs (r2 between 0.5 and 1). To search for cis eQTLs within up to 1 Mb of each 
investigated SNP, we interrogated six publically available eQTL databases, giving 
priority to cell types more likely to be involved in asthma biology (blood cell types 
and lung tissue): (i) a meta-analysis of the transcriptional profiles from peripheral 
blood cells of 5,311 individuals of European ancestry (the blood eQTL browser11); 
(ii) gene expression data from 777 lymphoblastoid cell lines from the MuTHER 
database10; (iii) transcriptional profiles of 405 and 550 lymphoblastoid cell lines 
from UK asthma (MRCA) and eczema (MRCE) family members, respectively13; 
(iv) eQTL data from monocytes from 1,490 individuals included in the GHS-
express database23; (v) GTEx eQTL Browser data from multiple tissues including 
the blood and lungs12; and (vi) transcriptional profiles from the lung tissues of 
1,111 subjects14 (URLs).

Search for missense variants at new asthma risk loci. To complement the eQTL 
analysis, we searched whether the lead asthma-associated SNPs and secondary 
signals were in LD (r2 > 0.5) with missense variants by using the HaploReg v4.1 
tool (URLs).

Overlap of loci associated with asthma and other phenotypes. Overlap of 
new asthma risk loci with associations with allergy-related phenotypes/diseases 
and immunologically related diseases as well as lung-function phenotypes was 
first annotated by using the 24 March 2015 version of the NHGRI–EBI GWAS 
catalog3 (URLs). We then used this catalog to systematically investigate the 
overlap of asthma signals with Prandom ≤ 10−4 in the multiancestry meta-analysis 
with association signals of all diseases and traits in the catalog. That version of 
the catalog comprised 19,080 SNP entries, 16,047 of which had a TAGC asthma-
association P value. To investigate pleiotropy, we filtered out SNPs associated with 
asthma in the database, SNPs with a reported GWAS P value > 10−7 (with the intent 
of removing some of the potential false positives in the catalog) and SNPs that were 
duplicated (i.e., to remove disease-SNP duplications). This procedure decreased 
the number of entries to 5,927. Notably, this process did not remove either SNPs 
in perfect LD associated with the same disease or SNPs that were present multiple 
times in the database because of their association with different phenotypes.  
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For some diseases or quantitative traits, there were multiple SNPs in the same 
region reported in the catalog, thus potentially yielding redundant information. 
Some of the SNPs might have been in strong LD, whereas others might have 
reflected independent signals. To avoid possible duplication of signals, we retained 
only unique trait–loci combinations, as reflected by the variables ‘disease trait’ 
and ‘region’ in the catalog. There were 4,231 unique entries remaining after this 
filtering step. Diseases/traits in the GWAS catalog were grouped according to the 
classification from Wang et al.37. We summarized the overlap of GWAS-catalog 
signals with asthma signals according to the proportion of catalog SNPs with 
asthma P values < 10−4 in our analysis. The significance of overlap was estimated as 
the binomial-tail probability for observing the number of TAGC SNPs with Prandom 
≤ 10−4 among the number of SNPs reported in the GWAS catalog for a group of 
diseases. The significance threshold for enrichment in shared associations between 
a disease group and asthma was set to 0.05 divided by the number of disease 
groups investigated, through a Bonferroni correction. Finally, we examined a larger 
set of SNPs in the GWAS catalog that showed an association with asthma at Prandom 
≤ 10−3 in TAGC multiancestry meta-analysis and estimated the proportion of false 
positives among those SNPs.

Enrichment of asthma risk loci in epigenetic marks. To obtain greater insight 
into the functional role of the genetic variants at the new and known asthma 
loci identified in this study, we investigated whether the lead SNPs and their 
proxies (r2 ≥ 0.80) were concentrated in cis-regulatory DNA elements. We used 
the UES pipeline40 (URLs) that was adapted to the current study. This approach 
tests whether GWAS-identified SNPs are enriched in particular functional 
annotations through use of Monte Carlo simulations. The original set of asthma-
associated SNPs included the lead SNPs at each asthma risk locus (i.e., one SNP 
per asthma-associated locus, as recommended by Hayes et al.40). We excluded the 
two associated loci spanning the HLA region (6p21.33 and 6p21.32), because of 
the high amount of variability and LD in that region. Each of the original lead 
SNPs was categorized according to its distance from the nearest transcription 
start site (TSS) and the number of LD partners (r2 ≥ 0.8). Quartiles for both the 
TSS distance and LD-partner count were calculated, and the initial SNPs were 
binned accordingly. Then, SNPs from the entire set of imputed SNPs used for 
analysis were binned according to the original SNP criteria (distance from the 
closest TSS, number of LD partners, and MAF). Random SNP sets were chosen, 
matching the original bin frequencies. LD partners (r2 ≥ 0.8) for both the original 
lead SNPs and random SNPs were retrieved. The SNP data, including the original 
and random sets of SNPs and their corresponding LD partners (r2 ≥ 0.8), were 
intersected with the cell-specific epigenome tracks of regulatory elements with 
BedTools intersectBed46, to determine which SNPs colocalized with a given type 
of regulatory elements (for example, enhancers or promoters). The resultant 
SNPs were then collapsed into loci that colocalized with marks according to LD 
structure. We computed an empirical P value for a specific track by using 10,000 
random SNP sets (this P value was equal to rloci/n, where rloci is the number of 
instances in which the frequency of colocalization of the random SNP sets with 
the regulatory feature was greater than or equal to the frequency of colocalization 
with the feature for the original SNP set, and n is the number of random SNP 
sets generated (here, 10,000). We used Benjamini–Hochberg FDRs to correct for 
multiple testing. We interrogated the functional data from 111 Roadmap reference 
epigenomes and 16 additional epigenomes from ENCODE that are available in a 
wide range of human cell and tissue types24 (URLs). We focused on enhancers and 
promoters that were defined with the ChromHMM 15-state model and assayed in 

all 127 epigenomes. We also examined enrichment in DNase I–hypersensitive sites 
that were available in 51 cell types.

Connectivity among asthma-associated loci. We used GRAIL25 to assess the 
relatedness among asthma-associated loci. As previously described in detail25, 
to define the genes near each SNP, GRAIL finds the furthest neighboring SNPs 
in the 3′  and 5′  direction that are in LD (r2 > 0.5) and proceeds outward in each 
direction to the nearest recombination hotspot. All genes that overlap that interval 
are considered to be implicated by the SNP. If there are no genes in that region, 
the interval is extended by 250 kb in either direction. We used the genome-wide-
significant signals identified by this study as seeds and queried loci to investigate 
the biological connectivity among those loci. The connectivity between genes 
belonging to these loci was assessed through text mining of PubMed abstracts. 
Each gene at each locus was scored for enrichment in GRAIL connectivity to genes 
located at the other loci by using statistical text-mining methods, as previously 
described25. The interconnectivity among genes at asthma risk loci was visualized 
using VIZGRAIL47 (URLs).

Variance explained by the asthma-associated genetic variants. We estimated the 
variance in asthma liability explained by the 22 distinct genome-wide-significant 
SNPs (18 lead SNPs plus four secondary signals identified by approximate 
conditional analysis) at the 18 asthma-associated loci, by using a method based on 
the liability threshold model48 and assuming a prevalence of asthma of 10%. The 
variance in asthma liability explained by individual SNPs was summed over all 22 
significant variants. For the loci that included two SNPs (lead SNP and secondary 
signal), we used the SNP effect sizes estimated by approximate joint analysis by 
using GCTA44. We also estimated the variance in asthma liability explained by the 
nine lead SNPs at the nine new asthma loci and by the 13 distinct genome-wide-
significant signals at the nine known loci.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The summary statistics of the meta-analysis that support the 
findings of this study are available through a link from the GWAS Catalog entry 
for the TAGC study on the EMBL–EBI (European Bioinformatics Institute) website 
(https://www.ebi.ac.uk/gwas/downloads/summary-statistics).
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. This study is a meta-analysis of asthma genome-wide association studies (GWAS) 
that was conducted in the framework of the Trans-National Asthma Genetic 
Consortium (TAGC). This consortium brought together worldwide groups of 
investigators with genome-wide data available in a total of  142,486 individuals 
(23,948 cases, 118,538 controls) of diverse ancestries, thus providing enough 
power to discover new asthma loci, based on results from GWAS of similar size for 
other complex diseases.  The sample sizes were reported by the groups forming 
the consortium.

2.   Data exclusions

Describe any data exclusions. The meta-analysis included a total of 66 GWAS based on HapMap2 imputed SNPs. 
Imputation, quality control (QC) and analysis was done by each group 
independently. Data (summary statistics for association between each SNP and 
asthma and QC criteria for each SNP) on a predefined set of 3,952,683 autosomal 
SNPs was shared. From this SNP panel, we excluded 620,238 ambiguous SNPs (for 
which the DNA strand cannot be determined) and 501,370 SNPs that did not pass 
the QC criteria for all 66 studies, thus making a total of 2,831,075 SNPs for the 
meta-analysis. To minimize the false-positive findings and to obtain robust results, 
we examined the combined results for 2 million SNPs for which at least two-thirds 
of the studies contributed to the meta-analysis (ie SNPs passed QC in at least two-
thirds of the studies).

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Because the meta-analysis included almost all asthma GWAS that had been 
conducted worldwide when TAGC  was formed, no reasonable replication could be 
performed.  This meta-analysis combined summary statistics from various 
populations and, thus, took into account different sample sizes, SNP effect sizes, 
variances and allele frequencies from each of the populations under investigation. 
We assesed whether the effect sizes of newly discovered variants in this analysis 
were not statistically different across studies by testing for heterogeneity between 
them.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Randomization  does not apply to our meta-analysis of summary statistics of  
asthma GWAS shared by the TAGC consortium. This is an observational study.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

The meta-analysis was done by combining summary statistics and applying QC 
criteria (based on mathematical grounds) in a systematic manner for all studies. 
This is an observational study where no blinding was applied.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The meta-analysis was done using Stata version 14.1 (STATA Corp., College Station, 
Texas, USA). All sofwtare are indicated in the URL section. 
Approximate conditional analysis was done using the Genome-wide Complex Trait 
Analysis (GCTA) software (see URLs) 
The analysis of co-localization of asthma risk variants  with epigenetic marks was 
done using the Uncovering Enrichment through Simulation pipeline (see URLs) 
Connectivity between asthma-associated loci was investigated using the GRAIL 
software (see URLs ) 
The statistical analysis of pleiotropy was done using the statistical software R

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

The summary statistics of the meta-analysis that support the findings of this study 
are available through a link from the GWAS Catalog entry for the TAGC study on 
the EMBL-EBI (European Bioinformatics Institute) web site (https://www.ebi.ac.uk/
gwas/ downloads/summary-statistics).

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

NA

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. NA

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

NA

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

NA
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

NA

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study involved combining summary statistics from individual analyses of 
association of SNPs with asthma  performed by each participating group. An 
overview of all studies included in the meta-analysis is presented in Supplementary 
Table 1. Methods used for the individual analyses are shown in Supplementary 
Table 2.  A brief description of the participants in each study is presented in the 
Supplementary Note. 
As stated in the Online Methods, all subjects provided informed consent to 
participate in genetic studies and local ethics committees for each of the individual 
studies approved the study protocol.
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