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The GenomeAsia 100K Project enables 
genetic discoveries across Asia

GenomeAsia100K Consortium*

The underrepresentation of non-Europeans in human genetic studies so far has 
limited the diversity of individuals in genomic datasets and led to reduced medical 
relevance for a large proportion of the world’s population. Population-specific 
reference genome datasets as well as genome-wide association studies in diverse 
populations are needed to address this issue. Here we describe the pilot phase of the 
GenomeAsia 100K Project. This includes a whole-genome sequencing reference 
dataset from 1,739 individuals of 219 population groups and 64 countries across Asia. 
We catalogue genetic variation, population structure, disease associations and 
founder effects. We also explore the use of this dataset in imputation, to facilitate 
genetic studies in populations across Asia and worldwide.

The underrepresentation of non-European individuals in human 
genetic studies1 limits the applicability of the results for a large pro-
portion of the world’s population2. Reference genome datasets3–12 are 
needed to characterize population-specific variation, enable efficient 
imputation of variants that are not directly genotyped, and extend 
genome-wide association studies (GWAS) to additional populations. 
The value of population-specific reference datasets is well recognized 
and projects based in the United States and Europe have provided deep 
characterization of specific populations (for example, Ashkenazi Jews12 
and individuals from the Netherlands3 and Iceland13) and, in particular, 
data from individuals of Nordic countries have provided examples of 
how reference genome datasets can be used to drive comprehensive 
genetic studies across an entire population14. In Africa, populations 
show complex genetic patterns, smaller blocks of linkage disequi-
librium and higher levels of heterozygosity, which provides unique 
value for genetic studies. Across the continent, early reference genome 
datasets for diverse populations are being built as part of H3Africa 
and other studies5,15. A Korean reference genome as well as Japanese 
and Chinese reference genome datasets have been created, and the 
formation of large biobanks such as BioBank Japan16 and the China 
Kadoorie Biobank17 will accelerate the pace of discovery of disease 
associations across east Asia.

A shared recognition of the value of coordinated efforts and the need 
for reference genome datasets that would be useful for the complex 
populations of Asia has led to the formation of the GenomeAsia con-
sortium (http://www.genomeasia100k.com). The consortium serves 
to facilitate and coordinate sequencing efforts among consortium 
members to maximize the value of the genomic sequence data that is 
produced and to facilitate efforts by national or other regional groups. 
Here we describe the GenomeAsia Pilot (GAsP) project, which consists 
of analyses of the whole-genome sequencing data of 1,739 individu-
als from 219 population groups across Asia, with the ultimate goal of 
providing a useful genomic resource and facilitating genetic studies in 
Asia. We use the data that was generated in this pilot to analyse popula-
tion structure and history, and as the basis for designing larger-scale 
genomic studies. Furthermore, we explore disease-associated loci as an 
initial comparison of differences between populations. We show that 

the variant data produced by this project improve variant filtering for 
the discovery of disease-associated genes of rare diseases. We show that 
Asia has sizable founder populations and that further studies in these 
populations may be useful for the discovery of rare-disease-associated 
genes. We also report an initial survey of loss-of-function alleles found 
in the GAsP project.

The GAsP dataset
For the GAsP project, we generated 1,267 high-coverage (average 
36×) whole-genome sequences and analysed these together with 596 
publicly available human genome sequences from previous sequenc-
ing studies (Supplementary Information 1, 2 and Supplementary 
Tables 1a–c, 2a). The 1,739 samples were enriched for individuals 
from population isolates to capture the broadest wealth of genetic 
diversity; the dataset includes 598 sequences from India, 156 from 
Malaysia, 152 from South Korea, 113 from Pakistan, 100 from Mon-
golia, 70 from China, 70 from Papua New Guinea, 68 from Indonesia,  
52 from the Philippines, 35 from Japan and 32 from Russia (Fig. 1a–c 
and Supplementary Table 1a–c). To facilitate comprehensive and  
comparative analysis of human genetic variation, we included 
sequencing data from African, European and American samples (Sup-
plementary Table 1a, b). The sequenced samples originate from 7 
global regions, 64 different countries of origin and 219 population 
groups. About 80% of the samples come from Asia and emphasize 
population groups that are underrepresented in previous genetic 
studies (Fig. 1a, b, Supplementary Tables 1a–c, 2b and Supplemen-
tary Information 1, 2). Each global region and population group was 
assigned a unique three-letter code for future reference (see Sup-
plementary Table 1a for three-letter code designations). Within Asia, 
the sampling of many distinct population groups allowed us to ana-
lyse the relationship between geography, physical characteristics 
and genetic variation. In south and southeast Asia, in particular, we 
sampled across diverse populations to gather new insights into how 
groupings defined on the basis of caste and language relate to genetic 
diversity, admixture with extinct hominins and other genetically 
described characteristics.
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Population structure
Knowledge of the complex history of Asian populations informs optimal 
sampling for larger-scale biomedical sequencing efforts. We applied 
standard approaches for detecting recent positive selection, quantify-
ing the population structure and inferring the history of the different 
populations, including principal component analysis18, multiple sequen-
tially Markovian coalescent (MSMC)19, ADMIXTURE20, FST, uniparental 
analyses and the analysis of the Y chromosome and mitochondrial 
haplogroups (Fig. 2, Extended Data Fig. 1 and Supplementary Infor-
mation 3–10). Our results generally recapitulate the broad inferences 
of previous studies, and ADMIXTURE plots show complex structure 
within south and southeast Asia (Fig. 2a). In particular, India, Malaysia 
and Indonesia contain multiple ancestral populations as well as multiple 
admixed groups. On the basis of MSMC cross-coalescence rates, which 
reflect the increase in coalescence times of haplotypes sampled from 
different populations relative to haplotypes sampled from the same 
population19, we estimate that the oldest population splits in southeast 
Asia and Oceania involve Melanesians and/or Negritos, who show a 
substructure from approximately 40 thousand years ago and evidence 
of separation around 20–30 thousand years ago (Extended Data Fig. 1b 
and Supplementary Information 3). The population structure provides 
genetic information on classically defined population groups to aid 
future studies. For example, using multiple analytical approaches (Sup-
plementary Information 3, 6), we confirmed that the anthropologically 
classified ‘Negrito’ groups from India, Malaysia and the Philippines, are 
genetically more closely related to their geographical neighbours than 
they are to other Negrito groups21,22, suggesting that dark skin colour is 
probably an environmental adaptation (for example, to high levels of 
solar radiation) and not an indicator of shared ancestry.

Our dense sampling of Asian populations enables the examination 
of Denisovan admixture in greater detail than has been previously 
possible, providing information about population splits or in-flows 
that occurred at or after the time of admixture (Supplementary 
Information 10). Our estimates of Denisovan ancestry were highest 
in Melanesians and the Aeta, intermediate in the Ati and groups from 
the Indonesian island of Flores, and low (but still significantly greater 
than 0) in most south, east and southeast Asian populations. We found 
high levels of Denisovan ancestry in Philippine Negrito groups but not 
in Malay or Andaman Negritos; these results are qualitatively similar to 
what was found in a previous study that was based on single-nucleotide 
polymorphism (SNP) arrays23. The high levels of Denisovan ancestry 
in Melanesians and the Aeta are consistent with an admixture event 
into a population that is ancestral to both23; however, two lines of evi-
dence suggest that the ancestors of the Aeta experienced a second 

Denisovan admixture event. First, multiple analyses found that the 
Aeta are genetically more similar to populations without appreciable 
Denisovan ancestry (for example, Igorot, Malay and Malay Negrito 
groups) than they are to Melanesians (Supplementary Information 3, 
6). This can be explained by more recent gene flow from other popu-
lations without Denisovan ancestry. However, such gene flow would 
reduce the levels of Denisovan admixture below that found in Melane-
sians. More directly, we find that putative Denisovan haplotypes that 
are unique to the Aeta (n = 962) are significantly longer than putative 
Denisovan haplotypes shared between Aeta and Papuans (n = 596, 
mean = 16.1 kb compared with mean = 14.1 kb, Mann–Whitney U-test, 
P ≪ 10−10), or putative Denisovan haplotypes unique to Papuans (n = 727, 
mean = 16.1 kb compared with mean = 14.9 kb, Mann–Whitney U-test, 
P ≪ 10−1,000) (Supplementary Information 10), supporting a scenario 
in which a second admixture event between the Aeta and Denisovans 
happened after the separation of the Aeta and Melanesians. Two distinct 
Denisovan admixture events are most consistent with Homo sapiens 
and Denisovans interacting within southeast Asia23, making it likely that 
admixture occurred within Sundaland (Fig. 2b) or even farther east24,25.

A recent study found a slightly increased amount of Denisovan ances-
try in south Asians compared with a priori expectations26. We exam-
ined whether this was correlated with either language or social and/or 
caste status. South Asian samples were grouped into individuals who 
speak Indo-European languages and individuals who speak non-Indo-
European languages (excluding individuals who speak Tibeto-Burman 
languages), as well as four social or cultural groups: tribal (Adivasi) 
groups, lower-caste groups, high-caste groups and Pakistani groups 
(Indo-European language speaking only). We found that the average 
levels of Denisovan ancestry were significantly different between the 
four social or cultural groups (Mann–Whitney U-test, P < 10−8 for all 
pairwise comparisons; Fig. 2c and Supplementary Information 10). Our 
results are consistent with the scenario that Indo-European-speaking 
migrants who entered the subcontinent from the northwest admixed 
with an indigenous South Asian (ancestral south Indian)27,28 group who 
had higher levels of Denisovan ancestry.

Medical relevance
We evaluated the use of GAsP dataset in disease-associated genetic stud-
ies and medically relevant applications to determine how the results of 
larger continuing GenomeAsia studies can be used to improve human 
health (Supplementary Table 4a). We annotated high-quality variants 
using public databases including ExAC (Exome Aggregation Consor-
tium)29, gnomAD29, 1000 Genomes Project4, ESP (NHLBI GO Exome 
Sequencing Project)30 and dbSNP (Extended Data Fig. 2) and focused 
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on coding-sequence variants. Overall 23% of protein-altering variants 
in GAsP were not found in these data sources. As expected the majority 
of coding variants were singletons or very rare (Extended Data Fig. 2). 
However, the absolute numbers of novel variants with a minor allele fre-
quency (MAF) ≥ 0.1% within our pan-Asian dataset is large (n = 194,585), 
and these are frequent enough to be of relevance for large-scale genetic 
association studies. We also searched for variants present at low fre-
quency in the overall dataset that are present at significantly higher 
allele frequencies in one or more of the population groups. We found an 
additional 144,329 novel variants with MAF > 1% in the full GAsP dataset 
that were present at a frequency of greater than 1% within populations 
grouped by geography; South Asia, Southeast Asia, Northeast Asia 
or Oceania (see Supplementary Table 1a for description of samples 
and population groups included in each geographically defined set). 
These geographical regions contain many diverse population groups, 
and additional studies are needed to characterize patterns of genetic 
variation in these groups and disease relevance.

In rare disease genetics, databases are used to filter based on allele 
frequency with the idea that common alleles are unlikely to be respon-
sible for rare highly penetrant disorders; however, in the absence of 
appropriate population reference datasets, allele frequencies can be 
misclassified and may lead to false disease associations31. We explored 
whether the GAsP variant dataset can improve the ability to identify 
disease-relevant variants in Asian cohorts. We analysed 152 exomes 
from individuals participating in the Indian Maturity Onset Diabetes in 
the Young (MODY) project. When both the gnomAD and GAsP datasets 
were used for filtering (MAF > 0.1%), we reduced the set of remaining 
candidate variants by approximately twofold in comparison to using 
the gnomAD dataset alone (Fig. 3a). In this process, we identified a com-
mon population polymorphism in NEUROD1 (H241Q) that is probably 
benign but that was previously reported to be medically relevant32,33. We 
annotated variants that were identified in the GAsP dataset against the 
Human Gene Mutation Database (HGMD) disease-causing pathological 
and ClinVar pathogenic variants. This analysis identified 732 variants 
(686 SNPs and 46 insertions or deletions (indels)) in 514 genes (Fig. 3b, 
Supplementary Table 4b, c and Supplementary Information 11). We 

compared the 732 pathogenic variants against the gnomAD, ExAC29, 
1000Genomes4, ESP30, dbSNP34, ALSPAC, TwinsUK35 and 1000Japanese6 
databases to remove variants that occurred at >1%, focused on those 
with allele frequencies >0.15% in GAsP (38 variants), and reviewed them 
against the criteria defined by the American College of Medical Genetics 
(ACMG). This resulted in reclassification of 11 of the 38 variants (Sup-
plementary Table 4d). We examined the geographical distribution of 
the remaining, revalidated but high-frequency, pathogenic disease-
associated variants. As expected, most of these variants were highly 
enriched in Asia. For example, an HBB variant (chromosome 11: 5248155 
c.92+5G>C) associated with β-thalassaemia is found almost exclusively 
in south Asians and at a lower frequency in southeast Asians (Fig. 3c).

We also examined our dataset for novel variants in genes known to be 
associated with cancer risk. We found 13 unique variants in 6 genes from 
17 samples. This included frameshift, stop-gained and essential splice-
site mutations in BRCA2 (n = 9), BRCA1 (n = 1), ATM (n = 2), BLM (n = 1), 
NBN (n = 2) and PMS2 (n = 2) (Fig. 3d and Supplementary Table 4e). Of 
the two PMS2 essential splice variants, one was found in a Korean sam-
ple. Loss-of-function mutations in PMS2 are associated with mismatch 
repair defects that lead to a higher risk of cancer development. In a 
separate study of gall bladder cancer, we found the same essential splice 
site PMS2 mutation (chromosome 7:6043690C>G) in a Korean patient 
whose gall bladder cancer exhibits microsatellite instability (E.W.S. 
and S. Seshagiri, manuscript in preparation). Identification of genetic 
variants that affect drug efficacy and safety through the alteration of 
pharmacokinetics enables application of individualized treatment36–41. 
Variation in drug responses are generally recognized and recommen-
dations for dosing are sometimes guided by apparent or self-reported 
population identity despite the lack of a rigorous pharmacogenomic 
basis. We assessed the allele frequencies of key pharmacogenomic 
variants in our dataset to identify inter-population differences that 
have potential implications on drug testing and treatment (Fig. 3e, 
Supplementary Table 4g and Supplementary Information 13).

Carbamezepine, clopidigrel, peginterferon and warfarin showed 
the largest variation between populations in predicted adverse drug 
responses with groups ranging from 0 and 100 predicted adverse drug 

Fig. 2 | Population structure and admixture. 
a, ADMIXTURE plots for k = 12 and k = 14 illustrating 
the identification of 12 reference groups. 
b, Proposed modern human migration route into 
southeast Asia during the Last Glacial Maximum 
with potential locations of Denisovan admixture 
(yellow asterisks). Green indicates the above water 
landmass at the glacial maximum and white 
outlines indicate present-day shorelines. 
c, Estimates of Denisovan ancestry in south Asians, 
stratified by social/cultural group and language. IE, 
Indo-European. Adivasi Indo-European, n = 30; 
Adivasi non-Indo-European, n = 196; caste Indo-
European, n = 68; caste non-Indo-European, n = 155; 
upper caste Indo-European, n = 49; upper caste 
non-Indo-European, n = 19; Pakistani Indo-
European, n = 79. The centre line indicates the 
median; box limits show the middle 50%; whiskers 
extend two standard deviations from the mean; 
points are outliers.
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responses. For example, the HLA-B*15:02 variant, associated with risk 
for development of Steven Johnson syndrome38 in patients treated 
with carbamazepine was found to occur at an increased frequency in 
Austronesian language-speaking populations from southeast Asia (for 
example, 63% in the Mentawai of West Sumatra; 46.6% in the Nias of 
North Sumatra) compared with other groups (Supplementary Infor-
mation 13). There are roughly 400 million individuals who belong 
to Austronesian groups that are at increased risk for carbamazepine 
sensitivity, including the vast majority of the people from Indonesia, 
Malaysia and the Philippines.

Founder populations
Population bottlenecks produce strong founder effects and increased 
rates of recessive disease. In populations with strong founder effects, 
the loss-of-function variant frequency spectrum is skewed higher, 
greatly increasing power of association42 and providing unique advan-
tages for the identification of genes associated with both rare and com-
plex diseases43,44. We followed the approach described in a previous 
study on south Asian populations to characterize the degree to which 
genomic segments are inherited as identical by descent (IBD) in popula-
tion groups in our dataset45.

Our analysis revealed IBD scores of 1.465 and 0.817 for Finnish and 
British groups, consistent with previous analyses45. The IBD score of all 
of the groups was normalized relative to the Finnish group (Fig. 4a and 
Supplementary Information 12). Our study includes many groups with 
small population sizes and it is expected that endogamy paired with small 
population size will greatly increase IBD scores. We found that indigenous 
and tribal groups had IBD scores that were skewed upwards from non-
tribal groups (Fig. 4b). Notably, we found that a number of Asian groups 
with large urban populations have IBD scores above or close to that of the 
Finnish population. For example, samples from an outpatient hospital in 
Chennai, a city with a census size of 9 million, had an IBD score that was 
approximately 1.3 times greater than the score for the Finnish group.

Human knockouts
Homozygous loss-of-function alleles found in humans give us the 
opportunity to assess the phenotypic effect of specific gene loss and 
can provide important information about opportunities for treating 
disease46,47. To assess the contents of our dataset, we examined high-
confidence protein-truncating variants (PTVs). We found 17,566 PTVs 
with at least 1 PTV in approximately 43% of all protein-coding genes 
(n = 8,766; Fig. 4c). Among the PTVs, most were heterozygous variants 
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unique to our dataset (n = 8,799; Fig. 4d), similar to the PTV data from 
ExAC25 (67% singletons). A smaller number were homozygous and had 
been reported in gnomAD, dbSNP or 1000 Genomes Project (n = 856). 
In addition, within our dataset were 121 homozygous PTVs that have 
not previously been reported (Supplementary Table 5). These novel 
homozygous PTVs were mostly found in groups with high IBD scores 
such as the Jarawa and Onge from the Andaman Islands (Fig. 4e). The 
novel homozygous PTVs include an allele of the ABCA7 gene, Q2010*, 
that is found in only the Aeta population (Fig. 4f). Heterozygosity for 
loss-of-function alleles of ABCA7 has been shown to increase suscep-
tibility to Alzheimer’s disease in European populations48.

Imputation panel
We carried out preliminary work to evaluate the utility of the pilot dataset 
for imputation. For this analysis, we downsampled whole-genome sequence 
data from South Asian, Southeast Asian and Northeast Asian population 
groups (see Supplementary Table 1a for samples included in each of these 
geographically defined sets) 30× to the genotypes represented on the 
Illumina Global Screening Array v.1 genotyping array, and compared the 
imputation using either phase 3 of the 1000 Genomes Project or the GAsP 
reference panels. We found, as described by Illumina, that imputation 
accuracy of the 1000 Genomes Project reference panel is consistently well 
below 90% for east Asian and south Asian samples whereas using the GAsP 
reference panel we achieved accuracies ranging from 93 to 95%. To acceler-
ate evaluation and broad utility, we have placed the data on the Michigan 
Imputation Server (https://imputationserver.sph.umich.edu/index.html).

Discussion
Understanding the genetic basis of human disease will benefit from an 
increase in the number and scale of disease-association studies that are 
carried out in Asian populations. In the pilot phase of the GenomeAsia 
project, the sample set that we analysed allowed us to address a wide 
range of questions regarding the history of specific Asian population 

groups and to map out strategies for additional sequencing efforts. 
We plan for a staged and coordinated approach, to include the genera-
tion of genomic population-specific reference datasets and imputa-
tion panels, and use this approach for the production of custom SNP 
arrays as a catalyst for disease-association studies. This approach is 
particularly useful in founder populations, such as recent studies in 
the founder populations of Finland49, as well as other populations. This 
will be particularly valuable in Asia14,50, which has founder effects that 
have not only previously been demonstrated in isolated populations, 
but are also evident in major urban centres.

Analysis of the GAsP dataset allows us to map out strategies for efforts 
focused on specific population centres in Asia as well as the generation 
of important tools that will increase our understanding of how genetic 
variants affect disease susceptibility and drug responses. The dataset 
improves the ability to filter out low-probability candidates for highly 
penetrant disorders, to identify putatively pathogenic variants that 
are found at high frequency in particular populations and improve 
the ability to infer pathogenicity of identified variants. The identifica-
tion of novel homozygous PTVs in this study expands the catalogue of 
genes in which homozygous loss of function appears to be tolerated 
and, when combined with phenotype information, this will provide 
important biological insights into gene function. The ability to define 
gene function in humans through the study of the phenotypic effects 
of loss-of-function mutations is becoming an increasingly valuable 
approach51 and the study of additional variants and populations in 
which homozygosity occurs at high rates will add to the global resources 
for carrying out human knockout studies.
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Fig. 4 | Founder effects and homozygous loss of function. a, IBD scores across 
different population groups are shown for 96 ethnicities (1,417 samples) across 
global regions. The scores given in the figure are relative ratios compared to 
that of the Finnish group. b, Violin plot showing IBD scores in 29 tribal groups 
and 25 non-tribal groups consisting of 293 and 336 samples, respectively. The 
centre line indicates the median; box limits show 1.5× the interquartile range. 

c, Proportion of genes with at least one high-confidence PTV. d, Proportion  
of novel, known, heterozygous and homozygous PTVs in the GAsP dataset.  
e, Pie chart of novel homozygous PTVs plotted by region (inner circle) and 
population group (outer circle). Groups with less than two PTVs were grouped 
as other. f, Novel homozygous PTV Q2010* (green) found in ABCA7 localizes to 
the C-terminal ABC domain. Previously reported PVTs are shown in grey.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to the allocation during analysis.

Samples
We accessed publicly available high-coverage, whole-genome FASTQ 
files from previous studies of human genetic variation52–55 and com-
bined these with 1,267 high-coverage genomes generated as part of 
this project. Full details on the samples chosen for sequencing and 
the informed consent processes for these samples can be found in 
Supplementary Information 1. We restricted our analyses to genomes 
generated using Illumina short-read sequencing technology.

Whole-genome sequencing
Whole-genome sequencing libraries were prepared using standard 
protocols (Illumina) and sequenced on Illumina Hiseq 2500/4000 or 
X10 machines. We obtained paired-end (2 × 100 bp or 2 × 150 bp) for 
each sample.

Filtering, alignment and variant calling
We aligned the Illumina short-read sequences to the GRCh37+decoy ref-
erence genome with BWA-mem56 using the default parameters. Putative 
PCR duplicates were flagged using SAMBLASTER57. The SAM outputs 
were converted to BAM format, and sorted by chromosomal coordinates 
using Sambamba58, and all BAM files for the same samples were merged.

The sex of the samples was inferred from the coverage of the auto-
somes and the sex chromosomes, and confirmed from the submitted 
metadata with the samples. All samples that had an average coverage 
less than 20-fold or for which we found a difference in the inferred and 
reported sex were removed from further analysis. We used verifyBamID59 
to identify contamination using the chip-free mode and samples for 
which swaps or contamination was identified were removed from subse-
quent analyses. A contamination level of 3% was used as a cut-off, and this 
left us with 1,739 samples that were used for all downstream analyses.

We identified the single-nucleotide substitutions and small indels 
variants in the 1,739 samples using the reference model (gVCF-based) 
workflow for joint analysis in GATK60. Variants were called individu-
ally in each sample using the HaplotypeCaller in ‘-ERC GVCF’ mode to 
produce a record of genotype likelihoods and annotations at each site 
in the genome. Multi-allelic variants are reported in the GenomeAsia 
browser but were not included in the analysis. A gVCF file was created 
for every sample, and a subsequent joint genotyping analysis of all 
gVCFs was done to identify the variants in the cohort. We followed the 
GATK-recommended best practices for variant recalibration to create 
a final VCF file and recalibrated the variants to select 99% of the true 
sites from the training set for VQSR61. The VCF files were zipped using 
bgzip and indexed using tabix.

Identification of first-degree relative pairs
Several of the reported analyses require filtering to remove related 
samples. We used KING62 to identify such first-degree relative pairs. We 
first used vcftools63 and plink64 to convert the VCF file into the required 
input format for KING. The estimated kinship coefficient was restricted 
to 0.177–0.354 as described in the KING manual to identify the first-
degree relative pairs, and the results were confirmed from the submit-
ted metadata. The number of unrelated samples by country-of-origin 
is shown in Supplementary Table 1.1.

Quantifying population structure and changes in population size
We restricted our attention to 7,966,132 autosomal markers (that is, 
SNPs) with MAF ≥ 0.01 and call rate ≥ 98%. In some analysis, severe link-
age disequilibrium pruning was applied as follows: sliding windows of 

size 50 (that is, the number of markers used for linkage disequilibrium 
testing at a time) and window increments of 5 markers; for any pair of 
SNPs in a window, the first marker of the pair was discarded if r2 > 0.2. 
After linkage disequilibrium pruning, 1,089,227 SNPs were retained for 
analysis. All data-filtering procedures were conducted in PLINK v.1.964.

Analyses of population structure was performed using the quality-
control-positive linkage-disequilibrium-pruned set of 1,089,227 autoso-
mal SNPs. Principal component analysis (PCA)18 was conducted across 
all available populations in EIGENSTRAT v.6.1.4. Results were visualized 
in Tableau v.9.3. We applied unsupervised hierarchical clustering of 
individuals using the maximum likelihood method implemented in 
ADMIXTURE v.1.3.020 using default input parameters. The ‘--cv’ flag was 
adopted to perform the cross-validation procedure and to calculate 
the optimal k value.

We used MSMC5 to estimate changes in population size and split times. 
This analysis used two different phased genome datasets (using Shapeit v.265  
and Eagle266). The details for the phasing are described in Supplemen-
tary Information 4. Chromosome 6 was excluded from the analysis 
owing to possible phasing errors in the HLA region. We used four hap-
lotypes (two individual genomes) for estimating changes in population 
size in a population and eight haplotypes (two genomes from each of 
a pair of populations) for the estimation of population split times. We 
assumed a mutation rate of μ = 1.25 × 10−8 per site per generation and an 
average generation time of 29 years, as in previous studies8,19.

Comparison with 1000 Genomes Project genotype calls
We filtered the variant calls to include only biallelic SNPs with <10% 
missing genotype calls that were within the 1000 Genomes Project 
strict mask (available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/supporting/accessible_genome_masks/20141020.
strict_mask.whole_genome.bed). Then, for each of the 119 overlapping 
samples considered individually, we calculated variant discordance 
rates for those filtered SNPs that (1) had a genotype call in both the 
1000 Genomes Project data and the GAsP data; and (2) had a ‘variant’ 
call (that is, a non-homozygous reference genotype call) in at least one 
of the datasets. These discordance rates were then stratified by the 
estimated MAF in the GAsP dataset.

Patterns of allele sharing
We used a parsimony-based analysis of allele sharing55 that focused 
on SNPs that were not present in sub-Saharan Africans or in archaic 
humans (further details are provided in Supplementary Information 8).

Archaic admixture
We used a method similar to the ‘enhanced’ D-statistic approach8,67 to 
estimate levels of Neanderthal and Denisovan ancestry in each non-
African sample. The estimates were calibrated assuming 0% Denisovan 
ancestry in the British population, 4% Denisovan ancestry in the Papuan 
population and 2% Neanderthal ancestry in the British population (full 
details are provided in Supplementary Information 9).

Determination of high-quality variants for medically related 
analyses
High-quality variants were defined as variants that (1) had a read-
depth ≥ 5 and genotype-quality ≥ 20; (2) were contained in the high-
confidence regions as described by Genome in a Bottle (ftp://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/
GRCh37/supplementaryFiles/HG001_GRCh37_GIAB_highconf_CG-
IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf.bed) 
and (3) passed the gnomAD_Filter. Variant annotation was carried out 
using SnpEff68 (v.4.1).

IBD scores
Groups with at least two samples were considered for analysis. We 
restricted our analysis to genomic regions with high-confidence calls 
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and removed related samples based on reported relationship, kinship, 
PCA and IBD analyses. The scores given in the figure are relative ratios 
compared to that of the Finnish group.

PTVs
PTVs are defined as high-quality variants that were annotated as having 
a strong impact on the protein (such as frameshifts, essential splice 
sites or premature stop codons). We restricted calls to high-confidence 
regions determined by Genome in a Bottle as described above and 
filtered for high-confidence PTVs using the LOFTEE program69. We 
used a similar strategy for additional filtering of variants as proposed 
previously47 and flagged variants with ≤7 reads covering the variant site; 
≤80% of reads had the variant, were not in the bottom 1 percentile of 
phyloP or gerpRS65 scores and for which the affected transcripts made 
up less than 50% of all expression as specified by GTEx.

Enriched medically relevant variants
We compared variant allele counts for Asian and Oceania samples 
from the GenomeAsia cohort to allele counts present in non-Asian 
gnomAD samples (European (non-Finnish), European (Finnish), Latino, 
African or other) for variants found in a set of 124 medically relevant 
genes. The genes used were 115 genes used for prenatal screening70 
as well as the cancer-associated genes BRCA1, BRCA2, TP53, MEN1, 
MLH1, MSH2, MSH6, PMS1 and PMS2A. A Fisher’s exact test was used 
to calculate variations that were significantly overrepresented in the 
GenomeAsia subsamples and corrected for multiple testing using the 
Bonferroni method. We further accessed variants for these genes that 
had not previously been reported. All variants were further filtered as 
being damaging as determined by having a high impact on the pro-
tein (stop codon, essential splice site or frameshift mutation) or were 
predicted to be damaging by the Polyphen2 program. A cumulative 
comparison of allele counts for all over-represented and novel variants 
was performed and compared to non-Asian gnomAD to calculate a P 
value, odds ratio and relative difference in cumulative allele frequency 
(GenomeAsia cumulative allele frequency minus gnomAD non-Asian 
allele frequency). Reported P values were corrected for multiple testing 
using the Bonferroni method.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
For each variant, summary data for genotype quality, allele depth and 
population-specific allele counts were calculated before removing all 
genotype data. This dataset is available without requirement for login 
or other form of restriction for browsing or for download at https://
browser.genomeasia100k.org. Individual level VCF data files represent-
ing the 1,180 newly sequenced genomes from individuals of 74 popula-
tion groups are freely available to any qualified investigator without 
restriction. Chinese samples sequenced were from Corriell cell lines 
and are not subject to Chinese government regulation. The data are 
also available from the European Genome Archive (EGA) under acces-
sion number EGAS00001002921. The procedure for accessing indi-
vidual level data are as follows: access forms can be obtained from the 
GenomeAsia website (https://browser.genomeasia100k.org), and once 
filled out and sent to dataaccess@genomeasia100k.org the request 
will undergo administrative review and instructions for downloading 
the data will be returned to the requestor. Access to individual level 
data from Malaysian samples are subject to additional restrictions. 
The complete dataset of sequences of unrelated individuals (1,667 
samples) has been phased and can be used for imputation through 
the Michigan Imputation Server (https://imputationserver.sph.umich.
edu/index.html). The goal of the GenomeAsia100K consortium is to 

facilitate and accelerate genetic studies in Asian populations by coor-
dinating sequencing efforts among its members. To achieve this goal, 
we are committed to continuing to make data publicly available and 
accessible. As data are contributed to the consortium by individual 
members, it will be made immediately available in summary form or 
as imputation reference panels where appropriate. Data will be made 
available in individual form wherever possible and not limited by the 
bounds of informed consent, national privacy laws and regulations, 
or other external restrictions that may apply.
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Extended Data Fig. 1 | Diversity and divergence times of GAsP samples.  
a, PCA plot of study samples. Africa (AFR), n = 102; West Eurasia (WER), n = 111; 
South Asia (SAS), n = 642; Southeast Asia (SEA), n = 162; Oceania (OCE), n = 68; 
Northeast Asia (NEA), n = 346; Americas (AMR), n = 26. The samples included in 
each of these geographically defined groups are described in Supplementary 

Table 1a. b, MSMC cross-coalescence rates showing divergence time estimates 
between different groups. The point estimate of the date was given at which 
25%,50% and 75% of lineages in the pair of populations have coalesced into a 
commonancestral population.
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Extended Data Fig. 2 | Characteristics of GAsP SNPs and indels.  
a, b, Comparison of all GAsP variants (a) or coding variants (b) with gnomAD, 
ExAC, 1000 Genomes, ESP and dbSNP data as a function of the MAF within the 

GAsP dataset. c, d, The number and lengths of small indels in the genome (c) or 
coding regions (d). e–h, Proportion of non-coding (e, g) or coding (f, h) indels 
that were singletons (e, f) or rare (allele frequency of <0.1%; g, h).
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