НИИ
медицинской
генетики

Томского нимц

Одно из ведущих медико-генетических учреждений России. Осуществляет высокотехнологичную медико-генетическую помощь населению, научные исследования и профессиональное образование в области медицинской генетики.

Сегодня в НИИ

НИИ медицинской генетики Томского НИМЦ – одна из профессиональных площадок в Российской Федерации для обсуждения передовых достижений в области медицинской генетики и генетики человека.


Больше новостей

Межрегиональная научно-практическая школа «Орфанные заболевания: вектор современной стратегии»

Яркое событие, объединяющее специалистов медицинского и биологического профиля.

Для участия в Конференции заполните форму регистрации.

Подробнее...

Институт

Институт был основан в 1982 году в качестве Отдела медицинской генетики Института медицинской генетики АМН СССР, а в 1987 году стал самостоятельным учреждением в структуре Томского научного центра АМН СССР.

Сегодня он является первым специализированным институтом в области медицинской генетики на территории Сибири и Дальнего Востока.

Генетическая Клиника

Медико-генетический центр (Генетическая клиника) – это первое в России и единственное за Уралом специализированное лечебно профилактическое учреждение, оказывающее населению региона современную медико генетическую помощь.

Наука

Мы развиваем медицинскую генетику в России как важного самостоятельного направления биомедицинской науки.



The role of SELE gene polymorphism in ST-elevation myocardial infarction

Ischemic heart disease (IHD) is an important medical and social problem. ST-elevation myocardial infarction (STEMI) is the most severe form of IHD, affecting all layers of the heart muscle. One of the diagnostic criteria for endothe lial dysfunction in myocardial infarction is the level of sE selectin, a cell adhesion molecule that recruits neutrophils and induces neutrophil inflammation. The aim of this study is to investigate intronic polymorphisms rs5353, rs3917412 and rs1534904 of the E-selectin coding gene SELE in patients with STEMI. We have analyzed a group of patients with STEMI (n = 74) and a population sample of Tomsk (n = 136) as the control group. The frequencies of the rs5353 genotypes in the SELE gene have shown statistically significant differences between patients and the control sample (p = 0.004). The CC genotype is a predisposing factor to STEMI (OR = 6.93, CI:95 % (1.84–26.04), χ2 = 8.69, p = 0.002). The analyzed markers were not studied previously in cardiovascular diseases (CVDs) and were rarely involved in association studies at all; there is no information on these SNPs in the leading databases. At the same time, all three variants, according to the RegulomeDB classification, belong to the functional class 1f, and are highly likely to have regulatory potential rela tive not only to the SELE gene, but also to other genes in the nearby region. The analysis of the functional significance of the studied markers has shown the presence of a region more extensive than one gene, which is co-regulated by the studied nucleotide substitutions. The association of rs5353 with STEMI identified in this study once again confirms the involvement of the SELE gene in the pathogenesis of CVDs. It is possible that this entire region of the genome may be involved indirectly in the pathogenesis of CVD through the systems of inflammation, immune response and DNA repair.



Prevalence of CNVs on the X chromosome in patients with neurodevelopmental disorders

Background: The X chromosome is enriched with genes related to brain development, and the hemizygous state of these genes in men causes some difficulties in the clinical interpretation of copy number variations (CNVs). In this study, we present data on the frequency and spectrum of CNVs on the X chromosome in a cohort of patients with neurodevelopmental disorders (NDDs).
Methods: Chromosomal microarray analysis was performed for 1175 patients with NDDs. CNVs were confirmed by real-time quantitative PCR. X chromosome inactivation was analysed by methyl-sensitive PCR. To determine the pathogenic significance of the CNVs, several criteria, including the origin (inherited or de novo), variant type (microdeletion or microduplication), and X chromosome inactivation pattern in asymptomatic and symptomatic carriers, were considered. Additionally, the spectrum, size and molecular bases of copy number changes in genes or gene regions involved in the development of the pathological phenotype in each patient were considered.
Results: CNVs on the X chromosome were identified in 33 patients (2.8%). Duplications and triplications (27 cases) were four times more common than deletions (6 cases). In 74% of patients, CNVs were of maternal origin; in 10% they were of paternal origin; and in 16% they arose de novo. The frequency of skewed X inactivation among family members who were healthy carriers of pathogenic and likely pathogenic CNVs and variants of uncertain significance (VUSs) on the X chromosome was 23%. For the first time, we reported several CNVs, including a pathogenic microdeletion at Xq26.1q26.2 involving the ARHGAP36 gene and a microduplication at Xp22.2 involving the OFD1 gene, CONCLUSIONS: This study expands on the frequency and spectrum of CNVs in patients with NDDs. Pathogenic variants on the X chromosome were present in 15% of cases, LP in 12%, VUS in 57%, and LB in 16% of cases. Previously unreported CNVs aid in the identification of new structural variants and genes associated with X-linked intellectual disability. We propose to consider the X-chromosome inactivation status when assessing the pathogenetic significance of CNVs using the ACMG algorithm (American College of Medical Genetics).