LINE-1 Methylation Index Correlates with Sister Chromatid Exchanges an Chromatid but Not Chromosome Aberrations in Personnel from a Nuclear Chemical Facility with Incorporated Plutonium-239
Vasilyev S.A., Tolmacheva E.N., Sazhenova E.A., Sukhanova N.N., Yakovleva Yu.S., Torkhova N.B., Plaksin M.B., Lebedev I.N.
Russian Journal of Genetics. 2024, 60(4), 543–550.
DOI: 10.1134/S1022795424040148
The level of chromosomal abnormalities in the somatic cells of adult individuals is characterized by significant interindividual variability, which may be partly affected by the genetic and epigenetic background. The epigenetic landscape in cells is largely determined by genome methylation. This study aimed to analyze the relationships between global genome methylation and the frequencies of chromosome abnormalities in lymphocytes of plutonium workers. The frequencies of chromosome aberrations, micronuclei, aneuploidy of chromosomes 2, 7, 8, 12, X, and Y and sister chromatid exchanges were analyzed in the lymphocytes of 40 male workers from a nuclear chemical facility (Seversk, Russia) with incorporated plutonium-239 and 49 healthy male volunteers who had no occupational exposure to ionizing radiation. The long interspersed nuclear elements-1 (LINE-1) methylation index was assessed as a well-known marker of global genome methylation. The frequencies of centromere-negative micronuclei (4.74 ± 2.26 vs. 3.02 ± 1.69‰), chromosome-type aberrations (0.81 ± 0.79 vs. 0.44 ± 0.69%), and total chromosome non-disjunction (0.93 ± 0.43 vs. 0.50 ± 0.25%) were significantly higher in the group of workers than in controls (p < 0.05). The LINE-1 methylation index did not differ significantly between the worker and control groups (74.93 ± 3.63 vs. 73.92 ± 4.62%). Correlations between LINE-1 methylation and the frequency of micronuclei (R = –0.35, p = 0.031) were observed in the control group, whereas correlations of LINE-1 methylation with chromatid-type aberrations (R = –0.42, p = 0.012) (but not chromosome-type aberrations) and with sister chromatid exchanges (R = –0.53, p = 0.004) were observed only in the group of plutonium workers. Thus, LINE-1 hypomethylation after plutonium exposure is associated mainly with chromatid breaks, either repaired or misrepaired.