ГлавнаяИнститутБиблиотека НИИ медицинской генетики

Публикации сотрудников

Просмотреть/скачать публикации сотрудников можно только авторизованным пользователям.

2021

Levin-Kravets O., Kordonsky A., Shusterman A., Biswas S., Persaud A., Elias S., Langut Y., Florentin A., Simpson-Lavy K.J., Yariv E., Avishid R., Sror M., Almog O., Marshanski T., Kadosh S., Ben David N., Manori B., Fischer Z., Lilly J., Borisova E.V., Ambrozkiewicz M.C., Tarabykin V., Kupiec M., Thaker M., Rotin D., Prag G.
Journal of Molecular Biology. 2021. 433(23), 167276.
DOI: 10.1016/j.jmb.2021.167276

Split reporter protein-based genetic section systems are widely used to identify and characterize protein-protein interactions (PPI). The assembly of split markers that antagonize toxins, rather than required for synthesis of missing metabolites, facilitates the seeding of high density of cells and selective growth. Here we present a newly developed split chloramphenicol acetyltransferase (split-CAT) -based genetic selection system. The N terminus fragment of CAT is fused downstream of the protein of interest and the C terminus fragment is tethered upstream to its postulated partner. We demonstrate the system's advantages for the study of PPIs. Moreover, we show that co-expression of a functional ubiquitylation cascade where the target and ubiquitin are tethered to the split-CAT fragments results in ubiquitylation-dependent selective growth. Since proteins do not have to be purified from the bacteria and due to the high sensitivity of the split-CAT reporter, detection of challenging protein cascades and post-translation modifications is enabled. In addition, we demonstrate that the split-CAT system responds to small molecule inhibitors and molecular glues (GLUTACs). The absence of ubiquitylation-dependent degradation and deubiquitylation in E. coli significantly simplify the interpretation of the results. We harnessed the developed system to demonstrate that like NEDD4, UBE3B also undergoes self-ubiquitylation-dependent inactivation. We show that self-ubiquitylation of UBE3B on K665 induces oligomerization and inactivation in yeast and mammalian cells respectively. Finally, we showcase the advantages of split-CAT in the study of human diseases by demonstrating that mutations in UBE3B that cause Kaufman oculocerebrofacial syndrome exhibit clear E. coli growth phenotypes.

Читать в источнике

Ravindran E., Jühlen R., Vieira-Vieira C.H., Ha T., Salzberg Y., Fichtman B., Luise-Becker L., Martins N., Picker-Minh S., Bessa P., Arts P., Jackson M.R., Taranath A., Kamien B., Barnett C., Li N., Tarabykin V., Stoltenburg-Didinger G., Harel A., Selbach M., Dickmanns A., Fahrenkrog B., Hu H., Scott H., Kaindl A.M.
Human Molecular Genetics. 2021. 30(22), 2068-2081.
DOI: 10.1093/hmg/ddab160

Primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders (MCPH-SCKS) include a heterogeneous group of autosomal recessive inherited diseases characterized by primary (congenital) microcephaly, the absence of visceral abnormalities, and a variable degree of cognitive impairment, short stature and facial dysmorphism. Recently, biallelic variants in the nuclear pore complex (NPC) component nucleoporin 85 gene (NUP85) were reported to cause steroid-resistant nephrotic syndrome (SRNS). Here, we report biallelic variants in NUP85 in two pedigrees with an MCPH-SCKS phenotype spectrum without SRNS, thereby expanding the phenotypic spectrum of NUP85-linked diseases. Structural analysis predicts the identified NUP85 variants cause conformational changes that could have an effect on NPC architecture or on its interaction with other NUPs. We show that mutant NUP85 is, however, associated with a reduced number of NPCs but unaltered nucleocytoplasmic compartmentalization, abnormal mitotic spindle morphology, and decreased cell viability and proliferation in one patient's cells. Our results also indicate the link of common cellular mechanisms involved in MCPH-SCKS spectrum disorders and NUP85-associated diseases. In addition to the previous studies, our results broaden the phenotypic spectrum of NUP85-linked human disease and propose a role for NUP85 in nervous system development.

Читать в источнике

Boiko A.S., Pozhidaev I.V., Paderina D.Z., Bocharova A.V., Mednova I.A., Fedorenko O.Y., Kornetova E.G., Loonen A.J.M., Semke A.V., Bokhan N.A., Ivanova S.A.
Pharmacogenomics and Personalized Medicine 2021. 14, 1123-1131.
DOI: 10.2147/PGPM.S327353

Metabolic syndrome (MetS) is characterized by abdominal obesity, hyperglycaemia, dyslipidaemia and hypertension. FTO gene has been implicated in the pathogenesis of obesity, but the available scientific data concerning their relationship to antipsychotic drug-induced obesity and metabolic syndrome is still incomplete and inconsistent, which indicates that continuing the investigation of this gene's role is necessary.

Читать в источнике

Miroshnikova V.V., Panteleeva A.A., Irina A. Pobozheva, Razgildina N.D., Ekaterina A. Polyakova E.A., Markov A.V., Belyaeva O.D., Berkovich O.A., Baranova E.I., Nazarenko M.S., Puzyrev V.P., Pchelina S.N.
BMC Cardiovasc Disord. 2021. 21(1), 566.
DOI: 10.1186/s12872-021-02379-7

Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD.

Читать в источнике

Lebedev I.N., Zhigalina D. I.
Journal of Assisted Reproduction and Genetics. 2021. 38(11), 2833-2848.
DOI: 10.1007/s10815-021-02304-z

Chromosomal mosaicism is a hallmark of early human embryo development. The last decade yielded an enormous amount of information about diversity and prevalence of mosaicism in preimplantation embryos due to progress in preimplantation genetic testing of aneuploidies (PGT-A) based exclusively on molecular karyotyping of trophectoderm biopsy. However, the inner cell mass karyotype is still missing for mosaic embryos affecting the success rate of assisted reproductive medicine. Here, a classification model of chromosomal mosaicism is proposed based on the analysis of the primary zygote karyotype, the timing and types of primary and secondary chromosome segregation errors, and the distribution of mosaic cell clones between different embryonic and extraembryonic compartments of the blastocyst. Five basic principles for mosaicism analysis are introduced, namely, the estimation of the primary zygote karyotype, the investigation of additional sample point, the requirement of the second time point analysis, the delineating of reciprocity of chromosome segregation, and comprehensive chromosome screening at the single-cell level. The suggested model allows the prediction of the inner cell mass karyotype of the blastocyst and its developmental potential based on information from trophectoderm biopsy and non-invasive PGT-A using blastocoele fluid sample or spent culture medium as additional sample and time points for analysis and considering the reciprocity as a basic process in chromosome segregation errors between daughter cells in postzygotic cell divisions.

Читать в источнике

Lebedev I.N., Karamysheva T.V., Elisaphenko E.A., Makunin A.I., Zhigalina D.I., Lopatkina M.E., Drozdov G.V., Cheremnykh A.D.,Torkhova N.B., Seitova G.N., Vasilyev S.A., Kashevarova A.A., Nazarenko L.P., Rubtsov N.B.
Biomedicines. 2021. 9(8), 1030.
DOI: 10.3390/biomedicines9081030

Interpreting the clinical significance of small supernumerary marker chromosomes (sSMCs) in prenatal diagnosis is still an urgent problem in genetic counselling regarding the fate of a pregnancy. We present a case of prenatal diagnosis of mosaic sSMC(10) in a foetus with a normal phenotype. Comprehensive cytogenomic analyses by array-based comparative genomic hybridization (aCGH), sSMC microdissection with next-generation sequencing (NGS) of microdissected library, fluorescence in situ hybridization (FISH) with locus-specific and telomere-specific DNA probes and quantitative real-time PCR revealed that sSMC(10) had a ring structure and was derived from the pericentromeric region of chromosome 10 with involvement of the 10p11.21-p11.1 and 10q11.21-q11.23 at 1.243 Mb and 7.173 Mb in size, respectively. We observed a difference in the length of sSMC(10) between NGS data of the DNA library derived from a single copy of sSMC(10), and aCGH results that may indicate instability and structural mosaicism for ring chromosomes in foetal cells. The presence of a 9 Mb euchromatin region in the analysed sSMC(10) did not lead to clinical manifestations, and a healthy girl was born at term. We suggest that the ring structure of sSMCs could influence sSMC manifestations and should be taken into account in genetic counselling during prenatal diagnosis.

Читать в источнике

Vasilyev S.A., Markov A.V., Vasilyeva O.Y., Tolmacheva E.N., Zatula L.A., Sharysh D.V., Zhigalina D.I., Demeneva V.V., Lebedev I.N.
MethodsX. 2021. 8, 101445.
DOI: 10.1016/j.mex.2021.101445

The methylation index of the LINE-1 promoter is one of the most commonly used markers for assessing the global level of genome methylation in various human cells and tissues. We developed an NGS-based protocol for DNA methylation analysis of the LINE-1 retrotransposon promoter. This approach allows assessment of the DNA methylation index of 19 CpG sites in the LINE-1 promoter that have the highest tissue- or tumor-specific variability. The method provides a DNA methylation profile for analyzing either the methylation index of each CpG site independently or the mean DNA methylation index across the LINE-1 promoter. The results obtained using the developed method corresponded well to the level of methylation assessed using a commercially available kit for DNA pyrosequencing. In addition, our method provides much more information: 1) the DNA methylation profile of a significant part of the LINE-1 promoter and 2) the level of DNA methylation at individual LINE-1 loci in the genome. The method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter can be used in large-scale studies of the global level of genome methylation in normal human cells or tumors. To accomplish this, we modified the targeted massive parallel sequencing method based on 16S Metagenomic Sequencing Library Preparation protocol (Illumina, USA) by: Introduction of the stage of bisulfite conversion of DNA. Development of specific primers for the LINE-1 sequence.

Читать в источнике

Kapsner L.A., Mate S., Prokosch H.-U., Zavgorodnij M.G., Majorova S.P., Hotz-Wagenblatt A., Kolychev O.V., Lebedev I.N., Hoheisel J.D., Bauer A., Hartmann A., Haller F., Moskalev E.A.
International Journal of Cancer. 2021. 149(5), 1150 - 1165.
DOI: 10.1002/ijc.33681

Quantification of DNA methylation in neoplastic cells is crucial both from mechanistic and diagnostic perspectives. However, such measurements are prone to different experimental biases. Polymerase chain reaction (PCR) bias results in an unequal recovery of methylated and unmethylated alleles at the sample preparation step. Post-PCR biases get introduced additionally by the readout processes. Correcting the biases is more practicable than optimising experimental conditions, as demonstrated previously. However, utilisation of our earlier developed algorithm strongly necessitates automation. Here, we present two R packages: rBiasCorrection, the core algorithms to correct biases; and BiasCorrector, its web-based graphical user interface frontend. The software detects and analyses experimental biases in calibration DNA samples at a single base resolution by using cubic polynomial and hyperbolic regression. The correction coefficients from the best regression type are employed to compensate for the bias. Three common technologies-bisulphite pyrosequencing, next-generation sequencing and oligonucleotide microarrays-were used to comprehensively test BiasCorrector. We demonstrate the accuracy of BiasCorrector's performance and reveal technology-specific PCR- and post-PCR biases. BiasCorrector effectively eliminates biases regardless of their nature, locus, the number of interrogated methylation sites and the detection method, thus representing a user-friendly tool for producing accurate epigenetic results.

Читать в источнике

Bushueva O., Barysheva E., Markov A., Belykh A., Koroleva I., Churkin E., Polonikov A., Ivanov V., Nazarenko M.
Journal of Molecular Neuroscience. 2021. 71(9), 1914-1932.
DOI: 10.1007/s12031-021-01840-8

Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.

Читать в источнике

Vasilyev S.A, Skryabin N.A., Kashevarova A.A., Tolmacheva E.N., Savchenko R.R., Vasilyeva O.Y., Lopatkina M.E., Zarubin A.A., Fishman V.S., Belyaeva E.O., Filippova M.O., Shorina A.R., Maslennikov A.B., Shestovskikh O.L., Gayner T.A., Culic, V., Vulic R., Nazarenko L.P., Lebedev I.N.
Cytogenetic and Genome Research. 2021. 161(4), 105-119.
DOI: 10.1159/000514491

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.

Читать в источнике

Gridina M., Mozheiko E., Valeev E., Nazarenko L.P., Lopatkina M.E., Markova Zh.G., Yablonskaya M.I., Voinova V.Yu., Shilova N.V., Lebedev I.N., Fishman V.S.
Epigenetic and Chromatin. 2021. 14(1), 15.
DOI: 10.1186/s13072-021-00389-5

The Hi-C technique is widely employed to study the 3-dimensional chromatin architecture and to assemble genomes. The conventional in situ Hi-C protocol employs restriction enzymes to digest chromatin, which results in nonuniform genomic coverage. Using sequence-agnostic restriction enzymes, such as DNAse I, could help to overcome this limitation.

Читать в источнике

Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Yu., Markov A.V., Zhigalina D.I., Zatula L.A., Lee V.A., Serdyukova E.S., Sazhenova E.A., Nikitina T.V., Kashevarova A.A., Lebedev I.N.
Journal of Assisted Reproduction and Genetics. 2021. 38, 139–149.
DOI: 10.1007/s10815-020-02003-1

High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy.

Читать в источнике

Nikitina T.V., Kashevarova A.A., Gridina M.M., Lopatkina M.E., Khabarova A.A., Yakovleva Yu.S., Menzorov A.G., Minina Yu.A., Pristyazhnyuk I.E., Vasilyev S.A., Fedotov D.A., Serov O.L., Lebedev I.N.
Scientific Reports. 2021. 11: 4325
DOI: 10.1038/s41598-021-83399-3

Human ring chromosomes are often unstable during mitosis, and daughter cells can be partially or completely aneuploid. We studied the mitotic stability of four ring chromosomes, 8, 13, 18, and 22, in long-term cultures of skin fibroblasts and induced pluripotent stem cells (iPSCs) by GTG karyotyping and aCGH. Ring chromosome loss and secondary aberrations were observed in all fibroblast cultures except for r(18). We found monosomy, fragmentation, and translocation of indexed chromosomes. In iPSCs, aCGH revealed striking differences in mitotic stability both between iPSC lines with different rings and, in some cases, between cell lines with the same ring chromosome. We registered the spontaneous rescue of karyotype 46,XY,r(8) to 46,XY in all six iPSC lines through ring chromosome loss and intact homologue duplication with isoUPD(8)pat occurrence, as proven by SNP genotype distribution analysis. In iPSCs with other ring chromosomes, karyotype correction was not observed. Our results suggest that spontaneous correction of the karyotype with ring chromosomes in iPSCs is not universal and that pluripotency is compatible with a wide range of derivative karyotypes. We conclude that marked variability in the frequency of secondary rearrangements exists in both fibroblast and iPSC cultures, expanding the clinical significance of the constitutional ring chromosome.

Читать в источнике

Paderina D.Z., Boiko A.S., Pozhidaev I.V., Bocharova A.V., Mednova I.A., Fedorenko O.Y., Kornetova E.G., Loonen A.J.M., Semke A.V., Bokhan N.A., Ivanova S.A.
Journal of Personalized Medicine. 2021. 11, 181.
DOI: 10.3390/jpm11030181

Antipsychotic-induced metabolic syndrome (MetS) is a multifactorial disease with a genetic predisposition. Serotonin and its receptors are involved in antipsychotic-drug-induced metabolic disorders. The present study investigated the association of nine polymorphisms in the four 5-hydroxytryptamine receptor (HTR) genes HTR1A, HTR2A, HTR3A, and HTR2C and the gene encoding for the serotonin transporter SLC6A4 with MetS in patients with schizophrenia.

Читать в источнике

Pachganov S., Murtazalieva, K., Zarubin A. Taran T., Chartier D., Tatarinova T.V.
Methods in Molecular Biology. 2021. V. 2238, 261-274.
DOI: 10.1007/978-1-0716-1068-8_17

As the interest in genetic resequencing increases, so does the need for effective mathematical, computational, and statistical approaches. One of the difficult problems in genome annotation is determination of precise positions of transcription start sites. In this paper, we present TransPrise-an efficient deep learning tool for predicting positions of eukaryotic transcription start sites. TransPrise offers significant improvement over existing promoter-prediction methods. To illustrate this, we compared predictions of TransPrise with the TSSPlant approach for well-annotated genome of Oryza sativa. Using a computer with a graphics processing unit, the run time of TransPrise is 250 min on a genome of 374 Mb long.We provide the full basis for the comparison and encourage users to freely access a set of our computational tools to facilitate and streamline their own analyses. The ready-to-use Docker image with all the necessary packages, models, and code as well as the source code of the TransPrise algorithm are available at http://compubioverne.group/ . The source code is ready to use and to be customized to predict TSS in any eukaryotic organism.

Читать в источнике

1 ... 8 9 10 11 12 ... 87